1887

Abstract

Four novel strains were isolated from soil collected in the Okinawa and Yamanashi prefectures, Japan. Based on their morphological and biochemical characteristics, along with sequence typing using the D1/D2 domain of the LSU rRNA, internal transcribed spacer (ITS) region including 5.8S rRNA, and translation elongation factor 1 alpha gene (), the four strains were shown to represent two novel species of the genus , described as sp. nov. (type strain No.3-a(35)=NBRC 110620=CBS 14747) and f.a., sp. nov. (type strain No.313=NBRC 110621=CBS 14748).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002050
2017-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2941.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002050&mimeType=html&fmt=ahah

References

  1. Starkey RL. Lipid production by a soil yeast. J Bacteriol 1946; 51:33–50[PubMed]
    [Google Scholar]
  2. Smith MT, Kurtzman CP. Lipomyces Lodder & Kregervan Rij (1952). In Kurtzman CP, Fell JW, Boekout T. (editors) The Yeasts: A Taxonomic Study, 5th ed. vol. 2 San Diego, CA: Elsevier; 19522011 pp. 545–547
    [Google Scholar]
  3. Zhao X, Kong X, Hua Y, Feng B, Zhao ZK. Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. European J Lipid Sci Technol 2008; 110:405–412 [View Article]
    [Google Scholar]
  4. Naganuma T, Uzuka Y, Tanaka K. Physiological factors affecting total cell number and lipid content of the yeast, Lipomyces starkeyi. J Gen Appl Microbiol 1985; 31:29–37 [View Article]
    [Google Scholar]
  5. Naganuma T, Uzuka Y, Tanaka K. Using inorganic elements to control cell growth and lipid accumulation in Lipomyces starkeyi. J Gen Appl Microbiol 1986; 32:417–424 [View Article]
    [Google Scholar]
  6. Meng X, Yang J, Xu X, Zhang L, Nie Q et al. Biodiesel production from oleaginous microorganisms. Renewable Energy 2009; 34:1–5 [View Article]
    [Google Scholar]
  7. Oguri E, Masaki K, Naganuma T, Iefuji H. Phylogenetic and biochemical characterization of the oil-producing yeast Lipomyces starkeyi. Antonie van Leeuwenhoek 2012; 101:359–368 [View Article][PubMed]
    [Google Scholar]
  8. Babjeva IP, Gorin SE. Soil Yeasts Moscow: Moscow State University Press; 1987
    [Google Scholar]
  9. Yamazaki A, Kawasaki H. Lipomyces chichibuensis sp. nov., isolated in Japan, and reidentification of the type strains of Lipomyces kononenkoae and Lipomyces spencermartinsiae. Int J Syst Evol Microbiol 2014; 64:2566–2572 [View Article][PubMed]
    [Google Scholar]
  10. van der Walt JP, Weijman ACM, von Arx JA. The anamorphic yeast genus Myxozyma gen. nov. Sydowia 1981; 34:191–198
    [Google Scholar]
  11. Smith MT, de Hoog GS. Dipodascopsis Batra & P. Millner. In Kurtzman CP, Fell JW. (editors) The Yeasts; a Taxonomic Study, 4th ed. Amsterdam: Elsevier Science B.V; 1998 pp. 178–180 [CrossRef]
    [Google Scholar]
  12. Kurtzman CP, Albertyn J, Basehoar-Powers E. Multigene phylogenetic analysis of the lipomycetaceae and the proposed transfer of Zygozyma species to Lipomyces and Babjevia anomala to Dipodascopsis. FEMS Yeast Res 2007; 7:1027–1034 [View Article][PubMed]
    [Google Scholar]
  13. Mcneill J, Barrie FR, Buck WR, Demoulin V, Greuter W et al. International Code of Nomenclature for Algae, Fungi, and Plants (Melbourne Code) Königstein: Koeltz Scientific; 2011
    [Google Scholar]
  14. O’Donnell K. Fusarium and its near relatives. In Reynolds DR, Taylor JW. (editors) The Fungal Holomorph: Mitotic Meiotic and Pleomorphic Speciation in Fungal Systematics Wallingford: CAB International; pp. 225–233
    [Google Scholar]
  15. White TJ, Bruns T, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis MA, Gelfand DH, Sninsky JJ, White TJ. (editors) PCR Protocols: A Guide to Methods and Applications New York: Academic Press, Inc; 1990 pp. 315–322
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  17. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  19. Kurtzman CP, Fell JW, Boekhout T, Robert V. Methods for isolation, phenotypic characterization and maintenance of yeasts. In Kurzman CP, Fell JW, Boekhout T. (editors) The Yeasts: A Taxonomic Study, 5th ed. vol. 1 San Diego, CA: Elsevier; 2011 pp. 87–105 [CrossRef]
    [Google Scholar]
  20. Holm C, Meeks-Wagner DW, Fangman WL, Botstein D. A rapid, efficient method for isolating DNA from yeast. Gene 1986; 42:169–173 [View Article][PubMed]
    [Google Scholar]
  21. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  22. Mikata K, Yamada Y. The ubiquinone system in Hasegawaea Japonica (Yukawa et Maki) Yamada et Banno: a new method for identifying ubiquinone homologs from yeast cells. Inst Ferment Osaka Res Commun 1999; 19:41–46
    [Google Scholar]
  23. Lachance MA. In defense of yeast sexual life cycles: the forma asexualis – an informal proposal. Yeast Newletter 2012; 61:24–25
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002050
Loading
/content/journal/ijsem/10.1099/ijsem.0.002050
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error