1887

Abstract

A novel bacterial strain, designated N60A, was isolated from sediment soil of crater lake, Baekrokdam, Hallasan, Jeju, Republic of Korea. Cells of N60A were Gram-reaction-negative, oxidase- and catalase-positive, non-motile rods and formed transparent white colonies on ten-fold diluted R2A agar. N60A contained summed feature 3 (C16 : 1ω7c/C16  : 1ω6c), iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids and MK-7 as the predominant isoprenoid quinone. It contained phosphatidylethanolamine as the predominant polar lipid. The DNA G+C content was 44.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequencing revealed that N60A formed a separate lineage in the genus Mucilaginibacter and that it was most closely related to Mucilaginibacter frigoritolerans FT22 (96.5 % sequence similarity). Phenotypic, chemotaxonomic and phylogenetic characteristics supported the conclusion that N60A represents a novel species of the genus Mucilaginibacter , for which the name Mucilaginibacter craterilacus sp. nov. is proposed. The type strain is N60A (=KCTC 52404=NRRL B-65396).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002043
2017-08-18
2019-08-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2891.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002043&mimeType=html&fmt=ahah

References

  1. Pankratov TA, Tindall BJ, Liesack W, Dedysh SN. Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 2007;57:2349–2354 [CrossRef][PubMed]
    [Google Scholar]
  2. Euzéby JP. List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol 1997;47:590–592 [CrossRef][PubMed]
    [Google Scholar]
  3. Kim JK, Choi TE, Liu QM, Park HY, Yi TH et al. Mucilaginibacter ginsenosidivorax sp. nov., with ginsenoside converting activity isolated from sediment. J Microbiol 2013;51:394–399 [CrossRef][PubMed]
    [Google Scholar]
  4. Kim DU, Lee H, Kim H, Kim SG, Park SY et al. Mucilaginibacter carri sp. nov., isolated from a car air conditioning system. Int J Syst Evol Microbiol 2016;66:1754–1759 [CrossRef][PubMed]
    [Google Scholar]
  5. Cui C-H, Choi T-E, Yu H, Jin F, Lee S-T et al. Mucilaginibacter composti sp. nov., with ginsenoside converting activity, isolated from compost. J Microbiol 2011;49:393–398 [CrossRef]
    [Google Scholar]
  6. Baik KS, Park SC, Kim EM, Lim CH, Seong CN. Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter. Int J Syst Evol Microbiol 2010;60:134–139 [CrossRef][PubMed]
    [Google Scholar]
  7. Joung Y, Joh K. Mucilaginibacter myungsuensis sp. nov., isolated from a mesotrophic artificial lake. Int J Syst Evol Microbiol 2011;61:1506–1510 [CrossRef][PubMed]
    [Google Scholar]
  8. Joung Y, Kim H, Kang H, Lee BI, Ahn TS et al. Mucilaginibacter soyangensis sp. nov., isolated from a lake. Int J Syst Evol Microbiol 2014;64:413–419 [CrossRef][PubMed]
    [Google Scholar]
  9. Joung Y, Kang H, Lee BI, Kim H, Joh K et al. Mucilaginibacter aquaedulcis sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 2015;65:698–703 [CrossRef][PubMed]
    [Google Scholar]
  10. Chen WM, Chen YL, Sheu SY. Mucilaginibacter roseus sp. nov., isolated from a freshwater river. Int J Syst Evol Microbiol 2016;66:1112–1118 [CrossRef][PubMed]
    [Google Scholar]
  11. Lee JH, Kim MS, Kang JW, Baik KS, Seong CN. Mucilaginibacter puniceus sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2016;66:4549–4554 [CrossRef][PubMed]
    [Google Scholar]
  12. Sheu SY, Chen YL, Chen WM. Mucilaginibacter fluminis sp. nov., isolated from a freshwater river. Int J Syst Evol Microbiol 2016;66:4567–4574 [CrossRef][PubMed]
    [Google Scholar]
  13. Park CS, Han K, Ahn TY. Mucilaginibacter koreensis sp. nov., isolated from leaf mould. Int J Syst Evol Microbiol 2014;64:2274–2279 [CrossRef][PubMed]
    [Google Scholar]
  14. Männistö MK, Tiirola M, Mcconnell J, Häggblom MM. Mucilaginibacter frigoritolerans sp. nov., Mucilaginibacter lappiensis sp. nov. and Mucilaginibacter mallensis sp. nov., isolated from soil and lichen samples. Int J Syst Evol Microbiol 2010;60:2849–2856 [CrossRef][PubMed]
    [Google Scholar]
  15. Yoon JH, Kang SJ, Park S, Oh TK. Mucilaginibacter litoreus sp. nov., isolated from marine sand. Int J Syst Evol Microbiol 2012;62:2822–2827 [CrossRef][PubMed]
    [Google Scholar]
  16. Kang CH, Jung YT, Yoon JH. Mucilaginibacter sabulilitoris sp. nov., isolated from marine sand in a firth. Int J Syst Evol Microbiol 2013;63:2865–2871 [CrossRef][PubMed]
    [Google Scholar]
  17. Chen XY, Zhao R, Tian Y, Kong BH, Li XD et al. Mucilaginibacter polytrichastri sp. nov., isolated from a moss (Polytrichastrum formosum), and emended description of the genus Mucilaginibacter. Int J Syst Evol Microbiol 2014;64:1395–1400 [CrossRef][PubMed]
    [Google Scholar]
  18. Tang J, Huang J, Qiao Z, Wang R, Wang G. Mucilaginibacter pedocola sp. nov., isolated from a heavy-metal-contaminated paddy field. Int J Syst Evol Microbiol 2016;66:4567–4574 [CrossRef][PubMed]
    [Google Scholar]
  19. Deng Y, Shen L, Xu B, Liu Y, Gu Z et al. Mucilaginibacter psychrotolerans sp. nov., isolated from peatlands. Int J Syst Evol Microbiol 2017;67:767–771 [CrossRef][PubMed]
    [Google Scholar]
  20. Kämpfer P, Busse HJ, Mcinroy JA, Glaeser SP. Mucilaginibacter auburnensis sp. nov., isolated from a plant stem. Int J Syst Evol Microbiol 2014;64:1736–1742 [CrossRef][PubMed]
    [Google Scholar]
  21. Aydogan EL, Busse HJ, Moser G, Müller C, Kämpfer P et al. Proposal of Mucilaginibacter phyllosphaerae sp. nov. isolated from the phyllosphere of Galium album. Int J Syst Evol Microbiol 2016;66:4138–4147 [CrossRef][PubMed]
    [Google Scholar]
  22. Aydogan EL, Busse HJ, Moser G, Müller C, Kämpfer P et al. Proposal of Mucilaginibacter galii sp. nov. isolated from leaves of Galium album. Int J Syst Evol Microbiol 2017;67:1318–1326 [CrossRef][PubMed]
    [Google Scholar]
  23. Urai M, Aizawa T, Nakagawa Y, Nakajima M, Sunairi M. Mucilaginibacter kameinonensis sp., nov., isolated from garden soil. Int J Syst Evol Microbiol 2008;58:2046–2050 [CrossRef][PubMed]
    [Google Scholar]
  24. Luo X, Zhang L, Dai J, Liu M, Zhang K et al. Mucilaginibacter ximonensis sp. nov., isolated from Tibetan soil. Int J Syst Evol Microbiol 2009;59:1447–1450 [CrossRef]
    [Google Scholar]
  25. Jeon Y, Lee SS, Chung BS, Kim JM, Bae JW et al. Mucilaginibacter oryzae sp. nov., isolated from soil of a rice paddy. Int J Syst Evol Microbiol 2009;59:1451–1454 [CrossRef][PubMed]
    [Google Scholar]
  26. Kim BC, Lee KH, Kim MN, Lee J, Shin KS. Mucilaginibacter dorajii sp. nov., isolated from the rhizosphere of Platycodon grandiflorum. FEMS Microbiol Lett 2010;309:130–135 [CrossRef][PubMed]
    [Google Scholar]
  27. Madhaiyan M, Poonguzhali S, Lee JS, Senthilkumar M, Lee KC et al. Mucilaginibacter gossypii sp. nov. and Mucilaginibacter gossypiicola sp. nov., plant-growth-promoting bacteria isolated from cotton rhizosphere soils. Int J Syst Evol Microbiol 2010;60:2451–2457 [CrossRef][PubMed]
    [Google Scholar]
  28. Kang SJ, Jung YT, Oh KH, Oh TK, Yoon JH. Mucilaginibacter boryungensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2011;61:1549–1553 [CrossRef][PubMed]
    [Google Scholar]
  29. Kim BC, Poo H, Lee KH, Kim MN, Kwon OY et al. Mucilaginibacter angelicae sp. nov., isolated from the rhizosphere of Angelica polymorpha Maxim. Int J Syst Evol Microbiol 2012;62:55–60 [CrossRef][PubMed]
    [Google Scholar]
  30. Han SI, Lee HJ, Lee HR, Kim KK, Whang KS. Mucilaginibacter polysacchareus sp. nov., an exopolysaccharide-producing bacterial species isolated from the rhizoplane of the herb Angelica sinensis. Int J Syst Evol Microbiol 2012;62:632–637 [CrossRef][PubMed]
    [Google Scholar]
  31. Jiang F, Dai J, Wang Y, Xue X, Xu M et al. Mucilaginibacter soli sp. nov., isolated from Arctic tundra soil. Int J Syst Evol Microbiol 2012;62:1630–1635 [CrossRef][PubMed]
    [Google Scholar]
  32. Lee HR, Han SI, Rhee KH, Whang KS. Mucilaginibacter herbaticus sp. nov., isolated from the rhizosphere of the medicinal plant Angelica sinensis. Int J Syst Evol Microbiol 2013;63:2787–2793 [CrossRef][PubMed]
    [Google Scholar]
  33. Yoon JH, Park S, Jung YT. Mucilaginibacter calamicampi sp. nov., a member of the family Sphingobacteriaceae isolated from soil at a field of reeds. Antonie van Leeuwenhoek 2013;104:37–45 [CrossRef][PubMed]
    [Google Scholar]
  34. Ahn JH, Kim BC, Joa JH, Kim SJ, Song J et al. Mucilaginibacter ginsengisoli sp. nov., isolated from a ginseng-cultivated soil. Int J Syst Evol Microbiol 2015;65:3933–3937 [CrossRef][PubMed]
    [Google Scholar]
  35. Baek K, Ok Jeon C. Mucilaginibacter vulcanisilvae sp. nov., isolated from a volcanic forest. Int J Syst Evol Microbiol 2015;65:2036–2041 [CrossRef][PubMed]
    [Google Scholar]
  36. Lee KC, Kim KK, Eom MK, Kim JS, Kim DS et al. Mucilaginibacter gotjawali sp. nov., isolated from soil of a lava forest. Int J Syst Evol Microbiol 2015;65:952–958 [CrossRef][PubMed]
    [Google Scholar]
  37. Jing YT, Wang P, Zhang H, Dong WL, Jing YJ et al. Mucilaginibacter yixingensis sp. nov., isolated from vegetable soil. Int J Syst Evol Microbiol 2016;66:1779–1784 [CrossRef][PubMed]
    [Google Scholar]
  38. Zhao Y, Lee HG, Kim SK, Yu H, Jin F et al. Mucilaginibacter pocheonensis sp. nov., with ginsenoside-converting activity, isolated from soil of a ginseng-cultivating field. Int J Syst Evol Microbiol 2016;66:2862–2868 [CrossRef][PubMed]
    [Google Scholar]
  39. Zheng R, Zhao Y, Wang L, Chang X, Zhang Y et al. Mucilaginibacter antarcticus sp. nov., isolated from tundra soil. Int J Syst Evol Microbiol 2016;66:5140–5144 [CrossRef][PubMed]
    [Google Scholar]
  40. An DS, Yin CR, Lee ST, Cho CH. Mucilaginibacter daejeonensis sp. nov., isolated from dried rice straw. Int J Syst Evol Microbiol 2009;59:1122–1125 [CrossRef][PubMed]
    [Google Scholar]
  41. Khan H, Chung EJ, Jeon CO, Chung YR. Mucilaginibacter gynuensis sp. nov., isolated from rotten wood. Int J Syst Evol Microbiol 2013;63:3225–3231 [CrossRef][PubMed]
    [Google Scholar]
  42. Khan H, Chung EJ, Kang DY, Jeon CO, Chung YR. Mucilaginibacter jinjuensis sp. nov., with xylan-degrading activity. Int J Syst Evol Microbiol 2013;63:1267–1272 [CrossRef][PubMed]
    [Google Scholar]
  43. Kim JH, Kang SJ, Jung YT, Oh TK, Yoon JH. Mucilaginibacter lutimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2012;62:515–519 [CrossRef][PubMed]
    [Google Scholar]
  44. Hwang YM, Baik KS, Seong CN. Mucilaginibacter defluvii sp. nov., isolated from a dye wastewater treatment facility. Int J Syst Evol Microbiol 2014;64:565–571 [CrossRef][PubMed]
    [Google Scholar]
  45. Joung Y, Kim H, Lee BI, Kang H, Kim TS et al. Mucilaginibacter flavus sp. nov., isolated from wetland. Int J Syst Evol Microbiol 2014;64:1304–1309 [CrossRef][PubMed]
    [Google Scholar]
  46. Paiva G, Abreu P, Proença DN, Santos S, Nobre MF et al. Mucilaginibacter pineti sp. nov., isolated from Pinus pinaster wood from a mixed grove of pines trees. Int J Syst Evol Microbiol 2014;64:2223–2228 [CrossRef][PubMed]
    [Google Scholar]
  47. Lee KC, Kim KK, Eom MK, Kim MJ, Lee JS. Fontibacillus panacisegetis sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2011;61:369–374 [CrossRef][PubMed]
    [Google Scholar]
  48. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  49. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  50. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  51. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  52. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolismvol. 3 New York: Academic Press; 1969; pp.21–132[CrossRef]
    [Google Scholar]
  53. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef]
    [Google Scholar]
  54. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  55. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  56. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987;19:1–67
    [Google Scholar]
  57. Skerman VBD. A Guide to the Identfication of the Genera of Bacteria, 2nd ed. Baltimore: Williams & Wilkins; 1967
    [Google Scholar]
  58. Bernardet JF, Nakagawa Y, Holmes B.Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  59. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955;1:138–146[CrossRef]
    [Google Scholar]
  60. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977;27:104–117 [CrossRef]
    [Google Scholar]
  61. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  62. Shin YK, Lee JS, Chun CO, Kim HJ, Park YH. Isoprenoid quinone profiles of Leclercia adecarboxylata KCTC 1036T. J Microbiol Biotechnol 1996;6:68–69
    [Google Scholar]
  63. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002043
Loading
/content/journal/ijsem/10.1099/ijsem.0.002043
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error