1887

Abstract

A Gram-stain-negative, aerobic, non-motile and coccoid to short-rod-shaped bacterial strain (THG-N2.22) was isolated from the rhizosphere of Mugunghwa (). Growth occurred at 20–40 °C (optimum 28 °C), at pH 5–9 (optimum 7) and with 0–4 % (w/v) NaCl (optimum 1 %). Based on 16S rRNA gene sequence analysis, the nearest phylogenetic neighbours of strain THG-N2.22 were identified as YW11 (98.5 % similarity), S5 (98.5 %), ATCC 49957 (98.2 %), JC17 (97.8 %), JC288 (97.3 %) and 170/96 (97.3 %); levels of similarity with the type strains of other species were lower than 97.0 %. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, two unidentified aminolipids, three unidentified phospholipids and three unidentified lipids. The major quinone was ubiquinone-10. The major fatty acids were C, C 2-OH, Cω7 and summed feature 3 (Cω7 and/or Cω6). The DNA G+C content of strain THG-N2.22 was 64.1 mol%. DNA–DNA hybridization values between strain THG-N2.22 and YW11, S5, ATCC 49957, JC17, JC288 and 170/96 were 43.1 % (30.2 %, reciprocal analysis), 39.0 % (24.7 %), 34.4 % (15.2 %), 18.0 % (14.5 %), 14.7 % (9.7 %) and 11.0 % (5.6 %), respectively. On the basis of the phylogenetic analysis, chemotaxonomic data, physiological characteristics and DNA–DNA hybridization data, strain THG-N2.22 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is THG-N2.22 (=KACC 18935=CCTCC AB 2016176).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002036
2017-08-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2873.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002036&mimeType=html&fmt=ahah

References

  1. Rihs JD, Brenner DJ, Weaver RE, Steigerwalt AG, Hollis DG et al. Roseomonas, a new genus associated with bacteremia and other human infections. J Clin Microbiol 1993; 31:3275–3283[PubMed]
    [Google Scholar]
  2. Venkata Ramana V, Sasikala Ch, Takaichi S, Ramana ChV. Roseomonas aestuarii sp. nov., a bacteriochlorophyll-a containing alphaproteobacterium isolated from an estuarine habitat of India. Syst Appl Microbiol 2010; 33:198–203 [View Article][PubMed]
    [Google Scholar]
  3. Sánchez-Porro C, Gallego V, Busse HJ, Kämpfer P, Ventosa A. Transfer of Teichococcus ludipueritiae and Muricoccus roseus to the genus Roseomonas, as Roseomonas ludipueritiae comb. nov. and Roseomonas rosea comb. nov., respectively, and emended description of the genus Roseomonas. Int J Syst Evol Microbiol 2009; 59:1193–1198 [View Article][PubMed]
    [Google Scholar]
  4. Bibashi E, Sofianou D, Kontopoulou K, Mitsopoulos E, Kokolina E. Peritonitis due to Roseomonas fauriae in a patient undergoing continuous ambulatory peritoneal Dialysis. J Clin Microbiol 2000; 38:456–457[PubMed]
    [Google Scholar]
  5. McLean TW, Rouster-Stevens K, Woods CR, Shetty AK. Catheter-related bacteremia due to Roseomonas species in pediatric hematology/oncology patients. Pediatr Blood Cancer 2006; 46:514–516 [View Article][PubMed]
    [Google Scholar]
  6. Subudhi CP, Adedeji A, Kaufmann ME, Lucas GS, Kerr JR. Fatal Roseomonas gilardii bacteremia in a patient with refractory blast crisis of chronic myeloid leukemia. Clin Microbiol Infect 2001; 7:573–575 [View Article][PubMed]
    [Google Scholar]
  7. Baik KS, Park SC, Choe HN, Kim SN, Moon JH et al. Roseomonas riguiloci sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2012; 62:3024–3029 [View Article][PubMed]
    [Google Scholar]
  8. Chen Q, Sun LN, Zhang XX, He J, Kwon SW et al. Roseomonas rhizosphaerae sp. nov., a triazophos-degrading bacterium isolated from soil. Int J Syst Evol Microbiol 2014; 64:1127–1133 [View Article][PubMed]
    [Google Scholar]
  9. Furuhata K, Miyamoto H, Goto K, Kato Y, Hara M et al. Roseomonas stagni sp. nov., isolated from pond water in Japan. J Gen Appl Microbiol 2008; 54:167–171 [View Article][PubMed]
    [Google Scholar]
  10. Gallego V, Sánchez-Porro C, García MT, Ventosa A. Roseomonas aquatica sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 2006; 56:2291–2295 [View Article][PubMed]
    [Google Scholar]
  11. Jiang CY, Dai X, Wang BJ, Zhou YG, Liu SJ et al. Roseomonas lacus sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 2006; 56:25–28 [View Article][PubMed]
    [Google Scholar]
  12. Ramaprasad EV, Sasikala Ch, Ramana ChV. Roseomonas oryzae sp. nov., isolated from paddy rhizosphere soil. Int J Syst Evol Microbiol 2015; 65:3535–3540 [View Article][PubMed]
    [Google Scholar]
  13. September SM, Brözel VS, Venter SN. Diversity of nontuberculoid Mycobacterium species in biofilms of urban and semiurban drinking water distribution systems. Appl Environ Microbiol 2004; 70:7571–7573 [View Article][PubMed]
    [Google Scholar]
  14. Sfanos K, Harmody D, Dang P, Ledger A, Pomponi S et al. A molecular systematic survey of cultured microbial associates of deep-water marine invertebrates. Syst Appl Microbiol 2005; 28:242–264 [View Article][PubMed]
    [Google Scholar]
  15. Subhash Y, Bang JJ, You TH, Lee SS. Roseomonas rubra sp. nov., isolated from lagoon sediments. Int J Syst Evol Microbiol 2016; 66:3821–3827 [View Article][PubMed]
    [Google Scholar]
  16. Lopes A, Esp Rito Santo C, Grass G, Chung AP, Morais PV. Roseomonas pecuniae sp. nov., isolated from the surface of a copper-alloy coin. Int J Syst Evol Microbiol 2011; 61:610–615 [View Article][PubMed]
    [Google Scholar]
  17. Kim SJ, Weon HY, Ahn JH, Hong SB, Seok SJ et al. Roseomonas aerophila sp. nov., isolated from air. Int J Syst Evol Microbiol 2013; 63:2334–2337 [View Article][PubMed]
    [Google Scholar]
  18. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  19. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  20. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  21. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  22. Kimura M. The Neutral Theory of Molecular Evolution United Kingdom: Cambridge University Press; 1984
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  25. Kluge AG, Farris JS. Quantitative phyletics and the evolution of Anurans. Syst Biol 1969; 18:1–32 [View Article]
    [Google Scholar]
  26. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  27. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  28. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993[PubMed]
    [Google Scholar]
  29. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article][PubMed]
    [Google Scholar]
  30. Yan ZF, Lin P, Chu X, Kook M, Li CT et al. Aeromicrobium halotolerans sp. nov., isolated from desert soil sample. Arch Microbiol 2016; 198:423–427 [View Article][PubMed]
    [Google Scholar]
  31. Yan ZF, Trinh H, Moya G, Lin P, Li CT et al. Lysobacter rhizophilus sp. nov., isolated from rhizosphere soil of mugunghwa, the national flower of South Korea. Int J Syst Evol Microbiol 2016; 66:4754–4759 [View Article][PubMed]
    [Google Scholar]
  32. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  33. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  34. Stabili L, Gravili C, Tredici SM, Piraino S, Talà A et al. Epibiotic Vibrio luminous bacteria isolated from some hydrozoa and bryozoa species. Microb Ecol 2008; 56:625–636 [View Article][PubMed]
    [Google Scholar]
  35. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  36. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  37. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  38. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  39. Hu HY, Lim BR, Goto N, Fujie K. Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Methods 2001; 47:17–24[PubMed] [CrossRef]
    [Google Scholar]
  40. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002036
Loading
/content/journal/ijsem/10.1099/ijsem.0.002036
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error