1887

Abstract

A polyphasic study was undertaken to establish the taxonomic position of a non-chromogenic, rapidly growing strain that had been isolated from sputum. The strain, CECT 8775, has chemotaxonomic and cultural properties consistent with its classification in the genus and was distinguished from the type strains of closely related mycobacterial species, notably from DSM 46749, its nearest phylogenetic neighbour, based on 16S rRNA, 65 and B gene sequence data. These organisms were also distinguished by a broad range of chemotaxonomic and phenotypic features and by a digital DNA–DNA relatedness value of 22.8 %. Consequently, the strain is considered to represent a novel species of for which the name sp. nov is proposed; the type strain is X82 (CECT 8775=DSM 44358).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002033
2017-09-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/9/3174.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002033&mimeType=html&fmt=ahah

References

  1. Lehmann KB, Neumann R. Atlas und Grundriss der Bakteriologie und Lehrbuch der speciellen bakteriologischen Diagnostik. München 1896
    [Google Scholar]
  2. Chester FD. Report of mycologist: bacteriological work. Del Agric Exp Sta Bull 1897; 9:38–145
    [Google Scholar]
  3. Goodfellow M, Jones AL. Order V. Corynebacteriales ord. nov. In Goodfellow M, Kampfer P, Busse HJ, Trujillo ME, Suzuki K et al. (editors) Bergey's Manual of Systematic Bacteriology, 2nd edn. vol. 5 The Actinobacteria, Part A New York: Springer; 2012 pp. 232–243 [CrossRef]
    [Google Scholar]
  4. Wayne LG, Kubica GP. The mycobacteria. In Sneath PHA, Mair NS, Sharpe ME, Holt JG. (editors) Bergey's Manual of Systematic Bacteriology vol. 2 Baltimore: Williams & Wilkins; 1986 pp. 1435–1457
    [Google Scholar]
  5. Magee JG, Ward AC. Genus I. Mycobacterium. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI et al. (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed. vol. 5 The Actinobacteria New York: Springer; 2012
    [Google Scholar]
  6. Teramoto K, Suga M, Sato T, Wada T, Yamamoto A et al. Characterization of mycolic acids in total fatty acid methyl ester fractions from Mycobacterium species by high resolution MALDI-TOFMS. Mass Spectrom 2015; 4:A0035 [View Article][PubMed]
    [Google Scholar]
  7. Tortoli E. Clinical manifestations of nontuberculous mycobacteria infections. Clin Microbiol Infect 2009; 15:906–910 [View Article][PubMed]
    [Google Scholar]
  8. Fusco da Costa AR, Fedrizzi T, Lopes ML, Pecorari M, Oliveira da Costa WL et al. Characterization of 17 strains belonging to the Mycobacterium simiae complex and description of Mycobacterium paraense sp. nov. Int J Syst Evol Microbiol 2015; 65:656–662 [View Article][PubMed]
    [Google Scholar]
  9. Jensen KA. Reinzuch und Typen Bestimmung von Tuberkelbazillenstämen. Zentralbl Bakteriol 1932; 125:222–239
    [Google Scholar]
  10. Lorian V. Differentiation of Mycobacterium tuberculosis and Runyon Group 3 "V" strains on direct cord-reading agar. Am Rev Respir Dis 1968; 97:1133–1135 [View Article][PubMed]
    [Google Scholar]
  11. MacFaddin JF. Media for Isolation–Cultivation–Identification–Maintenance of Medical Bacteria Baltimore: Williams & Wilkins; 1985
    [Google Scholar]
  12. Amaro A, Duarte E, Amado A, Ferronha H, Botelho A. Comparison of three DNA extraction methods for Mycobacterium bovis, Mycobacterium tuberculosis and Mycobacterium avium subsp. avium. Lett Appl Microbiol 2008; 47:8–11 [View Article][PubMed]
    [Google Scholar]
  13. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  14. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [View Article][PubMed]
    [Google Scholar]
  15. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9:2 [View Article][PubMed]
    [Google Scholar]
  16. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  17. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  18. Goloboff PA, Farris JS, Nixon KC. TNT, a free program for phylogenetic analysis. Cladistics 2008; 24:774–786 [View Article]
    [Google Scholar]
  19. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  20. Pattengale ND, Alipour M, Bininda-Emonds OR, Moret BM, Stamatakis A. How many bootstrap replicates are necessary?. J Comput Biol 2010; 17:337–354 [View Article][PubMed]
    [Google Scholar]
  21. Swofford DL. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0 Sunderland: Sinauer Associates; 2002
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  23. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  25. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  26. Adékambi T, Stein A, Carvajal J, Raoult D, Drancourt M. Description of Mycobacterium conceptionense sp. nov., a Mycobacterium fortuitum group organism isolated from a posttraumatic osteitis inflammation. J Clin Microbiol 2006; 44:1268–1273 [View Article][PubMed]
    [Google Scholar]
  27. Masaki T, Ohkusu K, Hata H, Fujiwara N, Iihara H et al. Mycobacterium kumamotonense sp. nov. recovered from clinical specimen and the first isolation report of Mycobacterium arupense in Japan: novel slowly growing, nonchromogenic clinical isolates related to Mycobacterium terrae complex. Microbiol Immunol 2006; 50:889–897 [View Article][PubMed]
    [Google Scholar]
  28. Sahraoui N, Ballif M, Zelleg S, Yousfi N, Ritter C et al. Mycobacterium algericum sp. nov., a novel rapidly growing species related to the Mycobacterium terrae complex and associated with goat lung lesions. Int J Syst Evol Microbiol 2011; 61:1870–1874 [View Article][PubMed]
    [Google Scholar]
  29. Kazda J, Stackebrandt E, Smida J, Minnikin DE, Daffe M et al. Mycobacterium cookii sp. nov. Int J Syst Bacteriol 1990; 40:217–223 [View Article][PubMed]
    [Google Scholar]
  30. Tortoli E, Gitti Z, Klenk HP, Lauria S, Mannino R et al. Survey of 150 strains belonging to the Mycobacterium terrae complex and description of Mycobacterium engbaekii sp. nov., Mycobacterium heraklionense sp. nov. and Mycobacterium longobardum sp. nov. Int J Syst Evol Microbiol 2013; 63:401–411 [View Article][PubMed]
    [Google Scholar]
  31. Tsukamura M, Yano I, Imaeda T. Mycobacterium moriokaense sp. nov., a rapidly growing, nonphotochromogenic Mycobacterium. Int J Syst Bacteriol 1986; 36:333–338 [View Article]
    [Google Scholar]
  32. Schinsky MF, Morey RE, Steigerwalt AG, Douglas MP, Wilson RW et al. Taxonomic variation in the Mycobacterium fortuitum third biovariant complex: description of Mycobacterium boenickei sp. nov., Mycobacterium houstonense sp. nov., Mycobacterium neworleansense sp. nov. and Mycobacterium brisbanense sp. nov. and recognition of Mycobacterium porcinum from human clinical isolates. Int J Syst Evol Microbiol 2004; 54:1653–1667 [View Article][PubMed]
    [Google Scholar]
  33. Chamoiseau G. Mycobacterium farcinogenes, agent causal du farcin du boeuf en Afrique. Revue d'Elevage Et De Médecine Vétérinaire Des Pays Tropicaux 1974; 27:61–65 [CrossRef]
    [Google Scholar]
  34. Chamoiseau G. Etiology of farcy in African bovines: Nomenclature of the causal organisms Mycobacterium farcinogenes Chamoiseau and Mycobacterium senegalense (Chamoiseau) comb. nov. Int J Syst Bacteriol 1979; 29:407–410 [View Article]
    [Google Scholar]
  35. Tsukamura M, Nemoto H, Yugi H. Mycobacterium porcinum sp. nov., a porcine pathogen. Int J Syst Bacteriol 1983; 33:162–165 [View Article]
    [Google Scholar]
  36. Schinsky MF, McNeil MM, Whitney AM, Steigerwalt AG, Lasker BA et al. Mycobacterium septicum sp. nov., a new rapidly growing species associated with catheter-related bacteraemia. Int J Syst Evol Microbiol 2000; 50:575–581 [View Article][PubMed]
    [Google Scholar]
  37. Kirschner P, Springer B, Vogel U, Meier A, Wrede A et al. Genotypic identification of mycobacteria by nucleic acid sequence determination: report of a 2-year experience in a clinical laboratory. J Clin Microbiol 1993; 31:2882–2889[PubMed]
    [Google Scholar]
  38. McNabb A, Eisler D, Adie K, Amos M, Rodrigues M et al. Assessment of partial sequencing of the 65-kilodalton heat shock protein gene (hsp65) for routine identification of Mycobacterium species isolated from clinical sources. J Clin Microbiol 2004; 42:3000–3011 [View Article][PubMed]
    [Google Scholar]
  39. Adékambi T, Colson P, Drancourt M. rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol 2003; 41:5699–5708 [View Article][PubMed]
    [Google Scholar]
  40. Hennessee CT, Seo JS, Alvarez AM, Li QX. Polycyclic aromatic hydrocarbon-degrading species isolated from Hawaiian soils: Mycobacterium crocinum sp. nov., Mycobacterium pallens sp. nov., Mycobacterium rutilum sp. nov., Mycobacterium rufum sp. nov. and Mycobacterium aromaticivorans sp. nov. Int J Syst Evol Microbiol 2009; 59:378–387 [View Article][PubMed]
    [Google Scholar]
  41. Ramaprasad EV, Rizvi A, Banerjee S, Sasikala C, Ramana CV. Mycobacterium oryzae sp. nov., a scotochromogenic, rapidly growing species is able to infect human macrophage cell line. Int J Syst Evol Microbiol 2016; 66:4530–4536 [View Article][PubMed]
    [Google Scholar]
  42. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  43. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  44. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586[PubMed]
    [Google Scholar]
  45. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  46. Sasser MJ. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical Note 101 Newark, DE: MIDI; 1990
    [Google Scholar]
  47. Minnikin DE, Goodfellow M. Lipid composition in the classification and identification of nocardiae and related taxa. In Goodfellow M, Brownell GH, Serrano JA. (editors) The Biology of the Nocardiae London: Academic Press; 1976 pp. 160–219
    [Google Scholar]
  48. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231[PubMed]
    [Google Scholar]
  49. Lechavalier MP, Lechevalier HA. Composition of whole-cell hydrolysates as a criterion in the classification of aerobic actinomycetes. In Prauser H. (editor) The Actinomycetales Jena: Gustav Fischer Verlag; 1970 pp. 311–316
    [Google Scholar]
  50. Collins MD. 11 Analysis of isoprenoid quinones. In Bergan T. (editor) Methods in Microbiology vol. 18 Academic Press; 1985 pp. 329–366
    [Google Scholar]
  51. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  52. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  53. Kroppenstedt RM, Goodfellow M. The family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillispora and Thermomonospora. In Dworkin M, Falkow K, Schleifer KH, Stackebrandt E. (editors) The Prokaryotes Archaea and Bacteria: Firmicutes, Actinomycetes, 3rd ed. vol. 5 New York: Springer; 2006
    [Google Scholar]
  54. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  55. Skipski VP, Peterson RF, Barclay M. Quantitative analysis of phospholipids by thin-layer chromatography. Biochem J 1964; 90:374–378 [View Article][PubMed]
    [Google Scholar]
  56. Lechevalier MP, de Bievre C, Lechevalier H. Chemotaxonomy of aerobic Actinomycetes: phospholipid composition. Biochem Syst Ecol 1977; 5:249–260 [View Article]
    [Google Scholar]
  57. Khatri B, Fielder M, Jones G, Newell W, Abu-Oun M et al. High throughput phenotypic analysis of Mycobacterium tuberculosis and Mycobacterium bovis strains' metabolism using biolog phenotype microarrays. PLoS One 2013; 8:e52673 [View Article][PubMed]
    [Google Scholar]
  58. Vaas LA, Sikorski J, Michael V, Göker M, Klenk HP. Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS One 2012; 7:e34846 [View Article][PubMed]
    [Google Scholar]
  59. Vaas LA, Sikorski J, Hofner B, Fiebig A, Buddruhs N et al. opm: an R package for analysing OmniLogR phenotype microarray data. Bioinformatics 2013; 29:1823–1824 [View Article][PubMed]
    [Google Scholar]
  60. Palomino JC, Leão SC, Ritacco V. 2007; Tuberculosis 2007 - From basic science to patient care. Tuberculosistextbook.com
  61. Opdl S. Manual para el Diagnóstico Bacteriológico de la tuberculosis: normas y Guía Técnica. Parte I Baciloscopía 2008
    [Google Scholar]
  62. Tomioka H, Saito H, Sato K, Dawson DJ. Arylsulfatase activity for differentiating Mycobacterium avium and Mycobacterium intracellulare. J Clin Microbiol 1990; 28:2104–2106[PubMed]
    [Google Scholar]
  63. Kent PT, Kubica GPW. Public Health Mycobacteriology a Guide for the Level III Laboratory Atlanta, GA: Atlanta: Centers for Disease Control; 1985
    [Google Scholar]
  64. Bernardelli A. Manual De Procedimientos. Clasificación fenotípica de las micobacterias. Dirección de Laboratorio y Control Técnico 2007
    [Google Scholar]
  65. Kilburn JO, Silcox VA, Kubica GP. Differential identification of mycobacteria. V. The tellurite reduction test. Am Rev Respir Dis 1969; 99:94–100 [View Article][PubMed]
    [Google Scholar]
  66. Ribón W. Biochemical Isolation and Identification of Mycobacteria. In Jimenez-Lopez JC. (editor) Biochemical Testing: InTech 2012
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002033
Loading
/content/journal/ijsem/10.1099/ijsem.0.002033
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error