1887

Abstract

A slightly irregular, short rod-shaped bacterial strain, MOZIV/2, showing activity of fructose 6-phosphate phosphoketolase was isolated from the oral cavity of a home-bred guinea-pig. Based on comparative 16S rRNA gene sequence analyses, its closest relatives were DSM 21503 and DSM 17774 with 96.0 and 95.6 % pairwise similarities, respectively. Completeness of the compared sequences was 97.3 and 96.9 %, respectively. Growth was found only under anaerobic conditions. Activities of α- and β-gluco(galacto)sidases were detected in strain MOZIV/2, which is characteristic for almost all members of the family . Sequencing of other molecular markers (, and ) revealed low gene sequence similarities to DSM 21503 ranging from 72.7 to 87.5 %. Strain MOZIV/2 differed from other species within the genus by the presence of Cω9. In addition, much higher proportions of C, C, C, C, C and C fatty acids were found in cells of strain MOZIV/2. The peptidoglycan structure was of type A4α [-Lys(-Orn)–-Asp], which is consistent with its classification within the genus . The DNA G+C content (45.8 mol%) was lower than those found in other alloscardovia. Phylogenetic studies and evaluation of phenotypic characteristics including the results of biochemical, physiological and chemotaxonomic analyses confirmed the novel species status for strain MOZIV/2, for which the name sp. nov. is proposed. The type strain is MOZIV/2 (=DSM 100237=CCM 8604=LMG 28781).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002031
2017-08-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2842.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002031&mimeType=html&fmt=ahah

References

  1. Biavati B, Mattarelli P, Bifidobacterium G. In Whitman W, Goodfellow M, Kämpfer P, H–J Busse, Trujillo M et al. (editors) Bergey´S Manual of Systematic Bacteriology, 2nd ed.vol. 5 New York: Springer; 2012; pp.171–206
    [Google Scholar]
  2. Killer J, Havlik J, Bunesova V, Vlkova E, Benada O. Pseudoscardovia radai sp. nov., another representative of a new genus within the family Bifidobacteriaceae isolated from the digestive tract of a wild pig (Sus scrofa scrofa). Int J Syst Evol Microbiol 2014;64:2932–2938 [CrossRef][PubMed]
    [Google Scholar]
  3. Killer J, Kopečný J, Mrázek J, Havlík J, Koppová I et al. Bombiscardovia coagulans gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of bumblebees. Syst Appl Microbiol 2010;33:359–366 [CrossRef][PubMed]
    [Google Scholar]
  4. Killer J, Rocková Š, Vlková E, Rada V, Havlík J et al. Alloscardovia macacae sp. nov., isolated from the milk of a macaque (Macaca mulatta), emended description of the genus Alloscardovia and proposal of Alloscardovia criceti comb. nov. Int J Syst Evol Microbiol 2013;63:4439–4446 [CrossRef][PubMed]
    [Google Scholar]
  5. García-Aljaro C, Ballesté E, Rosselló-Móra R, Cifuentes A, Richter M et al. Neoscardovia arbecensis gen. nov., sp. nov., isolated from porcine slurries. Syst Appl Microbiol 2012;35:374–379 [CrossRef][PubMed]
    [Google Scholar]
  6. Okamoto M, Benno Y, Leung KP, Maeda N. Metascardovia criceti Gen. Nov., Sp. Nov., from hamster dental plaque. Microbiol Immunol 2007;51:747–754 [CrossRef][PubMed]
    [Google Scholar]
  7. Downes J, Mantzourani M, Beighton D, Hooper S, Wilson MJ et al. Scardovia wiggsiae sp. nov., isolated from the human oral cavity and clinical material, and emended descriptions of the genus Scardovia and Scardovia inopinata. Int J Syst Evol Microbiol 2011;61:25–29 [CrossRef][PubMed]
    [Google Scholar]
  8. Mattarelli P, Brandi G, Calabrese C, Fornari F, Prati GM et al. Occurrence of Bifidobacteriaceae in human hypochlorhydria stomach. Microb Ecol Health Dis 2014;25: [CrossRef][PubMed]
    [Google Scholar]
  9. Beighton D, Gilbert SC, Clark D, Mantzourani M, Al-Haboubi M et al. Isolation and identification of bifidobacteriaceae from human saliva. Appl Environ Microbiol 2008;74:6457–6460 [CrossRef][PubMed]
    [Google Scholar]
  10. Barroso E, Martín V, Martínez-Cuesta MC, Peláez C, Requena T. Stability of saliva microbiota during moderate consumption of red wine. Arch Oral Biol 2015;60:1763–1768 [CrossRef][PubMed]
    [Google Scholar]
  11. Brown MK, Forbes BA, Stitley K, Doern CD. Defining the clinical significance of Alloscardovia omnincolens in the urinary tract. J Clin Microbiol 2016;54:1552–1556 [CrossRef][PubMed]
    [Google Scholar]
  12. Simpson PJ, Ross RP, Fitzgerald GF, Stanton C. Bifidobacterium psychraerophilum sp. nov. and Aeriscardovia aeriphila gen. nov., sp. nov., isolated from a porcine caecum. Int J Syst Evol Microbiol 2004;54:401–406 [CrossRef][PubMed]
    [Google Scholar]
  13. Killer J, Mrázek J, Bunešová V, Havlík J, Koppová I et al. Pseudoscardovia suis gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of wild pigs (Sus scrofa). Syst Appl Microbiol 2013;36:11–16 [CrossRef][PubMed]
    [Google Scholar]
  14. Huys G, Vancanneyt M, D'Haene K, Falsen E, Wauters G et al. Alloscardovia omnicolens gen. nov., sp. nov., from human clinical samples. Int J Syst Evol Microbiol 2007;57:1442–1446 [CrossRef][PubMed]
    [Google Scholar]
  15. Mantzourani M, Fenlon M, Beighton D. Association between Bifidobacteriaceae and the clinical severity of root caries lesions. Oral Microbiol Immunol 2009;24:32–37 [CrossRef][PubMed]
    [Google Scholar]
  16. Tanner AC, Mathney JM, Kent RL, Chalmers NI, Hughes CV et al. Cultivable anaerobic microbiota of severe early childhood caries. J Clin Microbiol 2011;49:1464–1474 [CrossRef][PubMed]
    [Google Scholar]
  17. Ogawa Y, Koizumi A, Kasahara K, Lee ST, Yamada Y et al. Bacteremia secondary to Alloscardovia omnicolens urinary tract infection. J Infect Chemother 2016;22:424–425 [CrossRef][PubMed]
    [Google Scholar]
  18. Johnson CL, Versalovic J. The human microbiome and its potential importance to pediatrics. Pediatrics 2012;129:950–960 [CrossRef][PubMed]
    [Google Scholar]
  19. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC et al. The human oral microbiome. J Bacteriol 2010;192:5002–5017 [CrossRef][PubMed]
    [Google Scholar]
  20. Dewhirst FE, Klein EA, Thompson EC, Blanton JM, Chen T et al. The canine oral microbiome. PLoS One 2012;7:e36067 [CrossRef][PubMed]
    [Google Scholar]
  21. Chun J, Kim KY, Lee JH, Choi Y. The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer. BMC Microbiol 2010;10:101 [CrossRef][PubMed]
    [Google Scholar]
  22. Darout IA. Oral bacterial interactions in periodontal health and disease. J Dent Oral Hyg 2014;6:51–57[CrossRef]
    [Google Scholar]
  23. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010;60:249–266 [CrossRef][PubMed]
    [Google Scholar]
  24. Mattarelli P, Holzapfel W, Franz CM, Endo A, Felis GE et al. Recommended minimal standards for description of new taxa of the genera Bifidobacterium, Lactobacillus and related genera. Int J Syst Evol Microbiol 2014;64:1434–1451 [CrossRef][PubMed]
    [Google Scholar]
  25. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P et al. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 2002;52:1043–1047 [CrossRef][PubMed]
    [Google Scholar]
  26. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  27. Delétoile A, Passet V, Aires J, Chambaud I, Butel MJ et al. Species delineation and clonal diversity in four Bifidobacterium species as revealed by multilocus sequencing. Res Microbiol 2010;161:82–90 [CrossRef][PubMed]
    [Google Scholar]
  28. Berthoud H, Chavagnat F, Haueter M, Casey MG. Comparison of partial gene sequences encoding a phosphoketolase for the identification of bifidobacteria. LWT - Food Science and Technology 2005;38:101–105 [CrossRef]
    [Google Scholar]
  29. Leblond-Bourget N, Philippe H, Mangin I, Decaris B. 16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter- and intraspecific Bifidobacterium phylogeny. Int J Syst Bacteriol 1996;46:102–111 [CrossRef][PubMed]
    [Google Scholar]
  30. Killer J, Kopečný J, Mrázek J, Koppová I, Havlík J et al. Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol 2011;61:1315–1321 [CrossRef][PubMed]
    [Google Scholar]
  31. Killer J, Kopecný J, Mrázek J, Rada V, Benada O et al. Bifidobacterium bombi sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol 2009;59:2020–2024 [CrossRef][PubMed]
    [Google Scholar]
  32. Schumann P. Peptidoglycan structure. Methods Microbiol 2011;38:101–129[CrossRef]
    [Google Scholar]
  33. Tindall BJ, Sikorski J, Smibert RM, Kreig NR. et al. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM, Snyder LR. (editors) Methods for General and Molecular Microbiology, 3rd ed.. Washington, DC: American Society for Microbiology; 2007; pp.330–393
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002031
Loading
/content/journal/ijsem/10.1099/ijsem.0.002031
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error