1887

Abstract

A novel Gram-stain-negative, aerobic, rod-shaped strain designated 166 was isolated from surface-sterilized root tissue of maize planted in the Fangshan District of Beijing, PR China. The 16S rRNA gene sequence analysis indicated that strain 166 belongs to the genus Rhizobium and is closely related to Rhizobium cellulosilyticum ALA10B2 and Rhizobium yantingense H66 with sequence similarities of 98.8 and 98.3 %, respectively. According to atp D and rec A sequence analysis, the highest sequence similarity between strain 166 and R. cellulosilyticum ALA10B2 is 93.8 and 84.7 %, respectively. However, the new isolate exhibited relatively low levels of DNA–DNA relatedness with respect to R. cellulosilyticum DSM 18291 (20.8±2.3 %) and Rhizobium yantingense CCTCC AB 2014007 (47.2±1.4 %). The DNA G+C content of strain 166 was 59.8 mol%. The main polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol, an unidentified aminophospholipid and an unidentified aminolipid. The major fatty acids of strain 166 were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The results of the physiological and biochemical tests and minor differences in the fatty acid profiles allowed a clear phenotypic differentiation of strain 166 from the type strains of closely related species, R. cellulosilyticum DSM 18291 and R. yantingense CCTCC AB 2014007. Strain 166 represents a novel species within the genus Rhizobium , for which the name Rhizobium wenxiniae sp. nov. is proposed, with the type strain 166 (=CGMCC 1.15279=DSM 100734).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002025
2017-08-18
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2798.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002025&mimeType=html&fmt=ahah

References

  1. Frank B. Uber die pilzsymbiose der Leguminosen. Ber Dtsch Bot Ges 1889;7:332–346 (in German)
    [Google Scholar]
  2. Kuykendall LD, Young JM, Martínez-Romero E, Kerr A, Sawada H et al. Rhizobium. In: Bergey's Manual of Systematics of Archaea and Bacteria 2015; pp.1–36
    [Google Scholar]
  3. Kuykendall LD. Family I. Rhizobiaceae Conn 1938, 321AL. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriololgy, 2nd ed.vol. 2 New York: Springer; 2005; pp.324–361
    [Google Scholar]
  4. Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada H. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 2001;51:89–103 [CrossRef][PubMed]
    [Google Scholar]
  5. Turdahon M, Osman G, Hamdun M, Yusuf K, Abdurehim Z et al. Rhizobium tarimense sp. nov., isolated from soil in the ancient Khiyik River. Int J Syst Evol Microbiol 2013;63:2424–2429 [CrossRef][PubMed]
    [Google Scholar]
  6. Zhang X, Sun L, Ma X, Sui XH, Jiang R. Rhizobium pseudoryzae sp. nov., isolated from the rhizosphere of rice. Int J Syst Evol Microbiol 2011;61:2425–2429 [CrossRef][PubMed]
    [Google Scholar]
  7. Zhang X, Li B, Wang H, Sui X, Ma X et al. Rhizobium petrolearium sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2012;62:1871–1876 [CrossRef][PubMed]
    [Google Scholar]
  8. McInroy JA, Kloepper JW. Population dynamics of endophytic bacteria in field-grown sweet corn and cotton. Can J Microbiol 1995;41:895–901 [CrossRef]
    [Google Scholar]
  9. Gutiérrez-Zamora ML, Martínez-Romero E. Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 2001;91:117–126 [CrossRef][PubMed]
    [Google Scholar]
  10. Sharma PK, Sarita S, Prell J. Isolation and characterization of an endophytic bacterium related to Rhizobium/Agrobacterium from wheat (Triticum aestivum L.) roots. Curr Sci 2005;89:608–610
    [Google Scholar]
  11. de Bellone SC, Bellone CH. Presence of endophytic diazotrophs in sugarcane juice. World J Microbiol Biotechnol 2006;22:1065–1068 [CrossRef]
    [Google Scholar]
  12. Chaintreuil C, Giraud E, Prin Y, Lorquin J, Ba A et al. Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol 2000;66:5437–5447 [CrossRef][PubMed]
    [Google Scholar]
  13. Peng G, Yuan Q, Li H, Zhang W, Tan Z. Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta. Int J Syst Evol Microbiol 2008;58:2158–2163 [CrossRef][PubMed]
    [Google Scholar]
  14. Zhang XX, Tang X, Sheirdil RA, Sun L, Ma XT et al. Rhizobium oryziadicis sp. nov., isolated from the root of rice. Int J Syst Evol Microbiol 2016;64:1373–1377[CrossRef]
    [Google Scholar]
  15. Tighe SW, de Lajudie P, Dipietro K, Lindström K, Nick G et al. Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 2000;50 Pt 2:787–801 [CrossRef][PubMed]
    [Google Scholar]
  16. Miller JH. Experiments in Molecular Genetics Cold Spring Harbour, NY: Cold Spring Harbour Laboratory Press; 1972
    [Google Scholar]
  17. García-Fraile P, Rivas R, Willems A, Peix A, Martens M et al. Rhizobium cellulosilyticum sp. nov., isolated from sawdust of Populus alba. Int J Syst Evol Microbiol 2007;57:844–848 [CrossRef][PubMed]
    [Google Scholar]
  18. Chen W, Sheng XF, He LY, Huang Z. Rhizobium yantingense sp. nov., a mineral-weathering bacterium. Int J Syst Evol Microbiol 2015;65:412–417 [CrossRef][PubMed]
    [Google Scholar]
  19. Vincent JM. A Manual for the Practical Study of Root-Nodule Bacteria. IBP Handbook 15 Oxford: Blackwell Scientific Publications; 1970
    [Google Scholar]
  20. Lane DJ. 16S/23S rRNA sequencing. In Stackerandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematic Chichester: Wiley; 1991; pp.115–175
    [Google Scholar]
  21. Vinuesa P, Silva C, Werner D, Martínez-Romero E. Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 2005;34:29–54 [CrossRef][PubMed]
    [Google Scholar]
  22. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  23. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  24. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  25. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  27. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  28. Rzhetsky A, Nei M. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 1992;35:367–375 [CrossRef][PubMed]
    [Google Scholar]
  29. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993;10:1073–1095[PubMed]
    [Google Scholar]
  30. Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P et al. Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 2001;147:981–993 [CrossRef][PubMed]
    [Google Scholar]
  31. Poly F, Monrozier LJ, Bally R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 2001;152:95–103 [CrossRef][PubMed]
    [Google Scholar]
  32. Sarita S, Sharma PK, Priefer UB, Prell J. Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiol Ecol 2005;54:1–11 [CrossRef][PubMed]
    [Google Scholar]
  33. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp.309–329
    [Google Scholar]
  34. Delory GE, King EJ. A sodium carbonate-bicarbonate buffer for alkaline phosphatases. Biochem J 1945;39:245 [CrossRef][PubMed]
    [Google Scholar]
  35. Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington: Am Soc Microbiol; 1994
    [Google Scholar]
  36. Gao JL, Sun P, Wang XM, Cheng S, Lv F et al. Sphingomonaszeicaulis sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 2016;66:3755–3760 [CrossRef][PubMed]
    [Google Scholar]
  37. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1996; pp.232
    [Google Scholar]
  38. Wang ET, van Berkum P, Beyene D, Sui XH, Dorado O et al. Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae. Int J Syst Bacteriol 1998;48 Pt 3:687–699 [CrossRef][PubMed]
    [Google Scholar]
  39. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  40. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  41. Beringer JE. R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 1974;84:188–198 [CrossRef][PubMed]
    [Google Scholar]
  42. Consden R, Gordon AH. Effect of salt on partition chromatograms. Nature 1948;162:180–181 [CrossRef][PubMed]
    [Google Scholar]
  43. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988;19:161–207[CrossRef]
    [Google Scholar]
  44. Collins M, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptido-glycans based on 2,4-diaminobutyric acid. J Appl Microbiol 1980;48:459–470
    [Google Scholar]
  45. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  46. Marmur J. A procedure for the isolation of DNA from microorganism. J Mol Biol 1961;3:208–218[CrossRef]
    [Google Scholar]
  47. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962;5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  48. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  49. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002025
Loading
/content/journal/ijsem/10.1099/ijsem.0.002025
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error