1887

Abstract

A Gram-stain-negative, aerobic, non-spore-forming, motile and ovoid or rod-shaped bacterial strain, JDTF-113, was isolated from a tidal flat in Jindo, an island of South Korea. Strain JDTF-113 grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. A neighbour-joining phylogenetic tree, based on 16S rRNA gene sequences, revealed that strain JDTF-113 fell within the clade enclosing the type strains of species of the genus Alteromonas . Strain JDTF-113 exhibited 16S rRNA gene sequence similarity values of 97.1–98.1 % to the type strains of Alteromonas lipolytica , Alteromonas litorea , Alteromonas mediterranea , Alteromonas confluentis , Alteromonas hispanica , Alteromonas genovensis and Alteromonas marina , and of 94.8–96.9 % to those of the other species of the genus Alteromonas . Strain JDTF-113 contained Q-8 as the predominant ubiquinone and C16 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C18 : 1ω7c as the major fatty acids. The major polar lipids of strain JDTF-113 were phosphatidylethanolamine, phosphatidylglycerol and one unidentified glycolipid. The DNA G+C content of strain JDTF-113 was 51.1 mol% and its mean DNA–DNA relatedness values with the type strains of seven closely phylogenetically related species of the genus Alteromonas were was 10–23 %. The differential phenotypic properties and phylogenetic and genetic distinctiveness support strain JDTF-113 being separated from species of the genus Alteromonas with validly published names . On the basis of the data presented, strain JDTF-113 is considered to represent a novel species of the genus Alteromonas , for which the name Alteromonas aestuariivivens sp. nov. is proposed. The type strain is JDTF-113 (=KCTC 52655=NBRC 112708).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002023
2017-08-18
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2791.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002023&mimeType=html&fmt=ahah

References

  1. Baumann L, Baumann P, Mandel M, Allen RD. Taxonomy of aerobic marine eubacteria. J Bacteriol 1972;110:402–429[PubMed]
    [Google Scholar]
  2. Parte AC. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  3. Ivanova EP, López-Pérez M, Zabalos M, Nguyen SH, Webb HK et al. Ecophysiological diversity of a novel member of the genus Alteromonas, and description of Alteromonas mediterranea sp. nov. Antonie van Leeuwenhoek 2015;107:119–132 [CrossRef][PubMed]
    [Google Scholar]
  4. Shi XL, Wu YH, Jin XB, Wang CS, Xu XW. Alteromonas lipolytica sp. nov., a poly-beta-hydroxybutyrate-producing bacterium isolated from surface seawater. Int J Syst Evol Microbiol 2017;67:237–242 [CrossRef][PubMed]
    [Google Scholar]
  5. Yoon JH, Kim IG, Kang KH, Oh TK, Park YH et al. Alteromonas marina sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Microbiol 2003;53:1625–1630 [CrossRef][PubMed]
    [Google Scholar]
  6. Yoon JH, Yeo SH, Oh TK, Park YH. Alteromonas litorea sp. nov., a slightly halophilic bacterium isolated from an intertidal sediment of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2004;54:1197–1201 [CrossRef][PubMed]
    [Google Scholar]
  7. van Trappen S, Tan TL, Yang J, Mergaert J, Swings J. Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from antarctic seas, and emended description of the genus Alteromonas. Int J Syst Evol Microbiol 2004;54:1157–1163 [CrossRef][PubMed]
    [Google Scholar]
  8. Martínez-Checa F, Béjar V, Llamas I, del Moral A, Quesada E et al. Alteromonas hispanica sp. nov., a polyunsaturated-fatty-acid-producing, halophilic bacterium isolated from Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol 2005;55:2385–2390 [CrossRef][PubMed]
    [Google Scholar]
  9. Vandecandelaere I, Nercessian O, Segaert E, Achouak W, Mollica A et al. Alteromonas genovensis sp. nov., isolated from a marine electroactive biofilm and emended description of Alteromonas macleodii Baumann et al. 1972 (approved lists 1980). Int J Syst Evol Microbiol 2008;58:2589–2596 [CrossRef][PubMed]
    [Google Scholar]
  10. Chen YG, Xiao HD, Tang SK, Zhang YQ, Borrathybay E et al. Alteromonas halophila sp. nov., a new moderately halophilic bacterium isolated from a sea anemone. Antonie van Leeuwenhoek 2009;96:259–266 [CrossRef][PubMed]
    [Google Scholar]
  11. Ivanova EP, Bowman JP, Lysenko AM, Zhukova NV, Gorshkova NM et al. Alteromonas addita sp. nov. Int J Syst Evol Microbiol 2005;55:1065–1068 [CrossRef][PubMed]
    [Google Scholar]
  12. Ivanova EP, Ng HJ, Webb HK, Kurilenko VV, Zhukova NV et al. Alteromonas australica sp. nov., isolated from the Tasman Sea. Antonie van Leeuwenhoek 2013;103:877–884 [CrossRef][PubMed]
    [Google Scholar]
  13. Matsuyama H, Minami H, Sakaki T, Kasahara H, Baba S et al. Alteromonas gracilis sp. nov., a marine polysaccharide-producing bacterium. Int J Syst Evol Microbiol 2015;65:1498–1503 [CrossRef][PubMed]
    [Google Scholar]
  14. Park S, Kang CH, Won SM, Park JM, Kim BC et al. Alteromonas confluentis sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 2015;55:3603–3608[CrossRef]
    [Google Scholar]
  15. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014;64:2969–2974 [CrossRef][PubMed]
    [Google Scholar]
  16. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987;19:1–67
    [Google Scholar]
  17. Barrow GI, Cowan F. Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993;[CrossRef]
    [Google Scholar]
  18. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001;51:1997–2006 [CrossRef][PubMed]
    [Google Scholar]
  19. Baumann P, Baumann L. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG. (editors) The Prokaryotes Berlin: Springer; 1981; pp.1302–1331
    [Google Scholar]
  20. Cohen-Bazire G, Sistrom WR, Stanier RY. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 1957;49:25–68 [CrossRef][PubMed]
    [Google Scholar]
  21. Staley JT. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 1968;95:1921–1942[PubMed]
    [Google Scholar]
  22. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963;85:1183–1184[PubMed]
    [Google Scholar]
  23. Yoon J-H, Kim H, Kim S-B, Kim H-J, Kim WY et al. Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 1996;46:502–505 [CrossRef]
    [Google Scholar]
  24. Yoon J-H, Lee ST, Kim S-B, Kim WY, Goodfellow M et al. Restriction fragment length polymorphism analysis of PCR-Amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int J Syst Bacteriol 1997;47:111–114 [CrossRef]
    [Google Scholar]
  25. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  26. Komagata K, Suzuki KI. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207[CrossRef]
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI Inc; 1990; MIDI Technical Note 101
    [Google Scholar]
  28. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  29. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994; pp.121–161
    [Google Scholar]
  30. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  31. Chiu HH, Shieh WY, Lin SY, Tseng CM, Chiang PW et al. Alteromonas tagae sp. nov. and Alteromonas simiduii sp. nov., mercury-resistant bacteria isolated from a Taiwanese estuary. Int J Syst Evol Microbiol 2007;57:1209–1216 [CrossRef][PubMed]
    [Google Scholar]
  32. Jin HM, Kim KH, Jeon CO. Alteromonas naphthalenivorans sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from tidal-flat sediment. Int J Syst Evol Microbiol 2015;65:4208–4214 [CrossRef][PubMed]
    [Google Scholar]
  33. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  34. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002023
Loading
/content/journal/ijsem/10.1099/ijsem.0.002023
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error