sp. nov., a lipolytic bacterium isolated from lower subtropical forest soil Free

Abstract

A Gram-stain-negative, aerobic, yellow-pigmented, non-spore-forming, non-motile, rod-shaped bacterium, designated strain DHOB07, was isolated from a soil sample collected from the lower subtropical forest of the Dinghushan Biosphere Reserve, Guangdong Province, PR China (23° 10′ N 112° 31′ E). Strain DHOB07 grew at 10–37 °C, pH 4–7 and 0–0.5 % (w/v) NaCl, with an optimum at 28 °C, pH 5–5.5 and 0% (w/v) NaCl on R2A medium. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain formed a clade with JP1, DHG59, BB4, CS5-B2and JS12-10, with sequence similarities of 98.9, 98.0, 97.9, 97.9 and 97.8 %, respectively. Multilocus sequence analysis based on the concatenated sequences of partial housekeeping genes , and confirmed that strain DHOB07 belongs to thegenus but is distinct from all currently known species of the genus . The GC content of the genomic DNA was 58.2 mol%. The DNA–DNA relatedness value between strain DHOB07 and JP1 was 41.8 %. Iso-C, iso-C and iso-Cω9 were the major fatty acids, and ubiquinone-8 was the only respiratory quinone detected, all of which supported the affiliation of strain DHOB07 to the genus . On the basis of the polyphasic characterization results presented above, strain DHOB07 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is DHOB07 (=NBRC 111473=KCTC 52132).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002020
2017-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1235.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002020&mimeType=html&fmt=ahah

References

  1. Xie CH, Yokota A. Dyella japonica gen. nov., sp. nov., a γ-proteobacterium isolated from soil. Int J Syst Evol Microbiol 2005; 55:753–756 [View Article][PubMed]
    [Google Scholar]
  2. An DS, Im WT, Yang HC, Yang DC, Lee ST. Dyella koreensis sp. nov., a β-glucosidase-producing bacterium. Int J Syst Evol Microbiol 2005; 55:1625–1628 [View Article][PubMed]
    [Google Scholar]
  3. Son HM, Yang JE, Yi EJ, Park Y, Won KH et al. Dyella kyungheensis sp. nov., isolated from soil of a cornus fruit field. Int J Syst Evol Microbiol 2013; 63:3807–3811 [View Article][PubMed]
    [Google Scholar]
  4. Jung HM, Ten LN, Kim KH, An DS, Im WT et al. Dyella ginsengisoli sp. nov., isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 2009; 59:460–465 [View Article][PubMed]
    [Google Scholar]
  5. Zhao F, Guo XQ, Wang P, He LY, Huang Z et al. Dyella jiangningensis sp. nov., a γ-proteobacterium isolated from the surface of potassium-bearing rock. Int J Syst Evol Microbiol 2013; 63:3154–3157 [View Article][PubMed]
    [Google Scholar]
  6. Lee DW, Lee SD. Dyella marensis sp. nov., isolated from cliff soil. Int J Syst Evol Microbiol 2009; 59:1397–1400 [View Article][PubMed]
    [Google Scholar]
  7. Weon HY, Anandham R, Kim BY, Hong SB, Jeon YA et al. Dyella soli sp. nov. and Dyella terrae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009; 59:1685–1690 [View Article][PubMed]
    [Google Scholar]
  8. Anandham R, Kwon SW, Indira Gandhi P, Kim SJ, Weon HY et al. Dyella thiooxydans sp. nov., a facultatively chemolithotrophic, thiosulfate-oxidizing bacterium isolated from rhizosphere soil of sunflower (Helianthus annuus L.). Int J Syst Evol Microbiol 2011; 61:392–398 [View Article][PubMed]
    [Google Scholar]
  9. Kim MS, Hyun DW, Kim JY, Kim S, Bae JW et al. Dyella jejuensis sp. nov., isolated from soil of Hallasan Mountain in Jeju Island. J Microbiol 2014; 52:373–377 [View Article][PubMed]
    [Google Scholar]
  10. Chen MH, Lv YY, Wang J, Tang L, Qiu LH. Dyella humi sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2016; 66:4372–4376 [View Article][PubMed]
    [Google Scholar]
  11. Chen MH, Xia F, Lv YY, Zhou XY, Qiu LH. Dyella acidisoli sp. nov., Dyella flagellata sp. nov. and Dyella nitratireducens sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2017; 67:736–743 [View Article][PubMed]
    [Google Scholar]
  12. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  13. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  14. Brown AE. Bensons Microbiological Applications: Laboratory Manual in General Microbiology, 4th ed. New York: McGraw-Hill; 1985
    [Google Scholar]
  15. Atlas RM. Composition of media. In Parks LC. (editor) Handbook of Microbiology Media, 2nd ed. Boca Raton, FL: CRC Press; 1993
    [Google Scholar]
  16. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 36:49
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  18. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree Topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  20. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  23. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  24. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962; 5:109–118 [View Article][PubMed]
    [Google Scholar]
  25. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  26. Wayne LG, Brenner D, Colwell R, Grimont P, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  27. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  28. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  29. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002020
Loading
/content/journal/ijsem/10.1099/ijsem.0.002020
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed