1887

Abstract

The taxonomic positions of JCM 15926, DSM 18319 and JCM 15132 were re-examined. Phylogenetic analysis and 16S rRNA gene sequence similarities revealed that all three strains are closely related with each other and form a monophyletic cluster with high sequence similarity (99.2 –99.9 %). A dendrogram constructed based on the protein spectra generated by matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy also displayed close clustering of these three strains. The fatty acid profiles of three strains were very similar to each other and contained branched fatty acids (anteiso-C, anteiso-C and iso-C) as the predominant cellular fatty acids. The polar lipid profiles of the three stains were similar and consisted of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylcholine as major polar lipids and an unknown lipid. Comparisons of morphological, chemotaxonomic and physiological data of JCM 15926, JCM 15132 and DSM 18319 are in agreement with the features of a common genus. DNA–DNA hybridization data generated during this study showed less than 70 % reassociation value with each other indicating that they are different at species level. Based on the present study, we conclude that DSM 18319 and JCM 15132 should be reclassified under the genus , since this genus has the nomenclatural priority, and reclassified as comb. nov. (type strain SSWW-21=DSM 18319=KCTC 19185=JCM 30550) and comb. nov. (type strain PON10=LMG 24222=JCM 15132=MTCC9128). An emended description of the genus is also presented.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002019
2017-08-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2766.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002019&mimeType=html&fmt=ahah

References

  1. Suzuki KI, Suzuki M, Sasaki J, Park YH, Komagata KK. Leifsonia gen. nov., a genus for 2,4-diaminobutyric acid-containing actinomycetes to accommodate “Corynebacterium aquaticum” Leifson 1962 and Clavibacter xyli subsp. cynodontis Davis et al. 1984. J Gen Appl Microbiol 1999;45:253–262 [CrossRef][PubMed]
    [Google Scholar]
  2. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997;47:479–491 [CrossRef]
    [Google Scholar]
  3. Matsumoto A, Yamada M, Omura S, Takahashi Y. Microterricola viridarii gen. nov., sp. nov., a new member of the family Microbacteriaceae. Int J Syst Evol Microbiol 2008;58:1019–1023 [CrossRef][PubMed]
    [Google Scholar]
  4. Lee DW, Lee JM, Seo JP, Schumann P, Kim SJ et al. Phycicola gilvus gen. nov., sp. nov., an actinobacterium isolated from living seaweed. Int J Syst Evol Microbiol 2008;58:1318–1323 [CrossRef][PubMed]
    [Google Scholar]
  5. Reddy GS, Prabagaran SR, Shivaji S. Leifsonia pindariensis sp. nov., isolated from the pindari glacier of the Indian himalayas, and emended description of the genus Leifsonia. Int J Syst Evol Microbiol 2008;58:2229–2234 [CrossRef][PubMed]
    [Google Scholar]
  6. Evtushenko LI, Dorofeeva LV, Subbotin SA, Cole JR, Tiedje JM et al. Leifsonia poae gen. nov., sp. nov., isolated from nematode galls on Poa annua, and reclassification of 'Corynebacterium aquaticum' Leifson 1962 as Leifsonia aquatica (ex Leifson 1962) gen. nov., nom. rev., comb. nov. and Clavibacter xyli Davis et al. 1984 with two subspecies as Leifsonia xyli (Davis et al. 1984) gen. nov., comb. nov. Int J Syst Evol Microbiol 2000;50 Pt 1:371–380 [CrossRef][PubMed]
    [Google Scholar]
  7. An SY, Xiao T, Yokota A. Reclassification of Leifsonia aurea to the genus rodoglobus as rhodoglobus aureus comb. nov., and emended description of rhodoglobus vestalii Sheridan et al. 2003. J Gen Appl Microbiol 2010;56:53–55[PubMed][CrossRef]
    [Google Scholar]
  8. Behrendt U, Schumann P, Hamada M, Suzuki K, Spröer C et al. Reclassification of Leifsonia ginsengi (Qiu et al. 2007) as Herbiconiux ginsengi gen. nov., comb. nov. and description of Herbiconiux solani sp. nov., an actinobacterium associated with the phyllosphere of Solanum tuberosum L. Int J Syst Evol Microbiol 2011;61:1039–1047 [CrossRef][PubMed]
    [Google Scholar]
  9. Jang YH, Kim SJ, Tamura T, Hamada M, Weon HY et al. Lysinimonas soli gen. nov., sp. nov., isolated from soil, and reclassification of Leifsonia kribbensis Dastager et al. 2009 as Lysinimonas kribbensis sp. nov., comb. nov. Int J Syst Evol Microbiol 2013;63:1403–1410 [CrossRef][PubMed]
    [Google Scholar]
  10. Matsumoto A, Takahashi Y. et al. Genus Microterricola. In Goodfellow M, Kämpfer P, Busse H, Trujillo ME, Suzuki K, Ludwig W, Whitman WB. (editors) Bergey’s Man. Syst. Bacteriol, 2nd ed.vol. 5 New York: Springer; 2012; pp.934–936
    [Google Scholar]
  11. Veríssimo A, Phycicola G. et al. Genus Phycicola. In Goodfellow M, Kämpfer P, Busse H, Trujillo ME, Suzuki K, Ludwig W, Whitman WB. (editors) Bergey’s Man. Syst. Bacteriol, 2nd ed.vol. 5 New York: Springer; 2012; pp.943–942
    [Google Scholar]
  12. Smibert RM, Krieg NR.In Phenotypic characterization. In Gerhardt P, Murray WAW RGE, NRK. (editors) Methods Gen. Mol. Bacteriol Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  13. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  14. Xia X. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 2013;30:1720–1728 [CrossRef][PubMed]
    [Google Scholar]
  15. Huelsenbeck JP, Ronquist F. MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 2001;17:754–755 [CrossRef][PubMed]
    [Google Scholar]
  16. Nylander JAA. Evolutionary Biology Centre, Uppsala University. MrModeltest. Program Distributed by the Author
    [Google Scholar]
  17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  18. Felsenstein J. Department of Genome Sciences, University of Washington S. PHYLIP (Phylogeny Inference package) version 3.6. 2005;47 Efficiently Finding the Most Parsimonious Phylogenetic Tree
  19. Davis MJ, Gillaspie AG, Vidaver AK, Harris RW. Clavibacter: a new genus containing some phytopathogenic coryneform bacteria, including Clavibacter xyli subsp. xyli sp. nov., subsp. nov. and Clavibacter xyli subsp. cynodontis subsp. nov., pathogens that cause ratoon stunting disease of sugarcane and bermudagrass stunting disease. Int J Syst Bacteriol 1984;34:107–117 [CrossRef]
    [Google Scholar]
  20. Madhaiyan M, Poonguzhali S, Lee JS, Senthilkumar M, Lee KC et al. Leifsonia soli sp. nov., a yellow-pigmented actinobacterium isolated from teak rhizosphere soil. Int J Syst Evol Microbiol 2010;60:1322–1327 [CrossRef][PubMed]
    [Google Scholar]
  21. S-y A, Xiao T, Yokota A, Sp Llichenia. nov., isolated from lichen in Japan. J. Gen. Appl. Microbiol 2009;55:339–343[CrossRef]
    [Google Scholar]
  22. Pindi PK, Kishore KH, Reddy GS, Shivaji S. Description of Leifsonia kafniensis sp. nov. and Leifsonia antarctica sp. nov. Int J Syst Evol Microbiol 2009;59:1348–1352 [CrossRef][PubMed]
    [Google Scholar]
  23. Ganzert L, Bajerski F, Mangelsdorf K, Lipski A, Wagner D. Leifsonia psychrotolerans sp. nov., a psychrotolerant species of the family Microbacteriaceae from Livingston Island, Antarctica. Int J Syst Evol Microbiol 2011;61:1938–1943 [CrossRef][PubMed]
    [Google Scholar]
  24. Peplies J, Kottmann R, Ludwig W, Glöckner FO. A standard operating procedure for phylogenetic inference (SOPPI) using (rRNA) marker genes. Syst Appl Microbiol 2008;31:251–257 [CrossRef][PubMed]
    [Google Scholar]
  25. Prakash O, Nimonkar Y, Vaishampayan A, Mishra M, Kumbhare S et al. Pantoea intestinalis sp. nov., isolated from the human gut. Int J Syst Evol Microbiol 2015;65:3352–3358 [CrossRef][PubMed]
    [Google Scholar]
  26. Russell FM, Biribo SS, Selvaraj G, Oppedisano F, Warren S et al. As a bacterial culture medium, citrated sheep blood agar is a practical alternative to citrated human blood agar in laboratories of developing countries. J Clin Microbiol 2006;44:3346–3351 [CrossRef][PubMed]
    [Google Scholar]
  27. Sasser M. Identification of bacteria through fatty acid analysis. In Klement Z, Rudolph K, Sands DC. (editors) Akademiai Kiado Budapest: Methods in Phytobacteriology; 1990; pp.199–204
    [Google Scholar]
  28. Monciardini P, Cavaletti L, Ranghetti A, Schumann P, Rohde M et al. Novel members of the family Micromonosporaceae, Rugosimonospora acidiphila gen. nov., sp. nov. and Rugosimonospora africana sp. nov. Int J Syst Evol Microbiol 2009;59:2752–2758 [CrossRef][PubMed]
    [Google Scholar]
  29. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  30. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208–IN1 [CrossRef]
    [Google Scholar]
  31. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  32. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  33. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002;4:770–773 [CrossRef][PubMed]
    [Google Scholar]
  34. Wayne LG. International committee on systematic bacteriology: announcement of the report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Zentralbl Bakteriol Mikrobiol Hyg A 1988;268:433–434[PubMed]
    [Google Scholar]
  35. Gibello A, Vela AI, Martín M, Barra-Caracciolo A, Grenni P et al. Reclassification of the members of the genus Tetrathiobacter Ghosh et al. 2005 to the genus Advenella coenye et al. 2005. Int J Syst Evol Microbiol 2009;59:1914–1918 [CrossRef][PubMed]
    [Google Scholar]
  36. Evtushenko L, Leifsonia G et al. In Kämpfer P, Ludwig W, Goodfellow M, Busse H, Trujillo ME, Suzuki K, Whitman WB. (editors) Bergey’s Man. Syst. Bacteriol, 2nd ed.vol. 5 New York: Springer; 2012; pp.907–923
    [Google Scholar]
  37. Hamada M, Shibata C, Tamura T, Suzuki K. Zhihengliuella flava sp. nov., an actinobacterium isolated from sea sediment, and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 2013;63:4760–4764 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002019
Loading
/content/journal/ijsem/10.1099/ijsem.0.002019
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error