1887

Abstract

A Gram-stain-positive bacterium, designated TSL3, was isolated from faeces of a porcupine, Hystrix indica, from the Budapest Zoo and Botanical Garden, Hungary. On the basis of 16S rRNA gene sequence analysis, the strain is phylogenetically related to the family Micrococcaceae . The highest 16S rRNA gene sequence similarity was found with Micrococcus terreus V3M1 (96.50 %) followed by Arthrobacter humicola KV-653 (96.43 %). Cells of strain TSL3 were aerobic, non-motile and coccoid-shaped. The main fatty acids were anteiso-C15 : 0 (54.4 %), iso-C16 : 0 (18.2 %) and iso C15 : 0 (9.7 %). The major menaquinone was MK-7, and the polar lipid profile included phosphatidylglycerol, diphosphatidylglycerol, dimannosylglyceride, trimannosyldiacylglycerol, phosphatidylinositol, three unknown phospholipids and two unknown glycolipids. Strain TSL3 showed the peptidoglycan structure A4alpha l-Lys - Gly - l-Glu. The DNA G+C content of strain TSL3 was 58.4 mol%. Phenotypic and genotypic characterisation clearly showed that strain TSL3 could be differerentiated from the members of other genera in the family Micrococcaceae . According to these results, strain TSL3 represents a novel genus and species, for which the name Micrococcoides hystricis gen. nov., sp. nov. is proposed. The type strain is TSL3 (=DSM 29785=NCAIM B. 02604).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002018
2017-08-30
2019-08-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2758.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002018&mimeType=html&fmt=ahah

References

  1. Pribram E. A contribution to the classification of microorganisms. J Bacteriol 1929;18:361–394[PubMed]
    [Google Scholar]
  2. Skerman VBD, McGowan V, Sneath PHA. Approved lists of bacterial names. Int J Syst Evol Microbiol 1980;30:225–420 [CrossRef]
    [Google Scholar]
  3. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997;47:479–491 [CrossRef]
    [Google Scholar]
  4. Zhi XY, Li WJ, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 2009;59:589–608 [CrossRef][PubMed]
    [Google Scholar]
  5. Cohn F. Untersuchungen über bakterien. Beitr Biol Pflanz 1872;1:127–244
    [Google Scholar]
  6. Wieser M, Denner EB, Kämpfer P, Schumann P, Tindall B et al. Emended descriptions of the genus Micrococcus, Micrococcus luteus (Cohn 1872) and Micrococcus lylae (Kloos et al. 1974). Int J Syst Evol Microbiol 2002;52:629–637 [CrossRef][PubMed]
    [Google Scholar]
  7. Cao YR, Jiang Y, Jin RX, Han L, He WX et al. Enteractinococcus coprophilus gen. nov., sp. nov., of the family Micrococcaceae, isolated from Panthera tigris amoyensis faeces, and transfer of Yaniella fodinae Dhanjal et al. 2011 to the genus Enteractinococcus as Enteractinococcus fodinae comb. nov. Int J Syst Evol Microbiol 2012;62:2710–2716 [CrossRef][PubMed]
    [Google Scholar]
  8. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992;8:451–452 [CrossRef][PubMed]
    [Google Scholar]
  9. Bozzola JJ, Russell LD. Electron Microscopy, 2nd ed. Sudbury: Jones and Bartlett Publishers; 1998
    [Google Scholar]
  10. Tarrand JJ, Gröschel DH. Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 1982;16:772–774[PubMed]
    [Google Scholar]
  11. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 2004
    [Google Scholar]
  12. Smibert RM, Krieg NR. Phenotypic characterisation. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.603–711
    [Google Scholar]
  13. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  14. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996;46:234–239 [CrossRef][PubMed]
    [Google Scholar]
  15. Stead DE, Sellwood JE, Wilson J, Viney I. Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Bacteriol 1992;72:315–321 [CrossRef]
    [Google Scholar]
  16. Tóth EM, Vengring A, Homonnay ZG, Kéki Z, Spröer C et al. Phreatobacter oligotrophus gen. nov., sp. nov., an alphaproteobacterium isolated from ultrapure water of the water purification system of a power plant. Int J Syst Evol Microbiol 2014;64:839–845 [CrossRef][PubMed]
    [Google Scholar]
  17. Schumann P, Busse HJ. Reclassification of Arthrobacter sanguinis (Mages et al. 2009) as Haematomicrobium sanguinis gen. nov., comb. nov. Int J Syst Evol Microbiol 2017;67:1052–1057 [CrossRef][PubMed]
    [Google Scholar]
  18. Schumann P. Peptidoglycan Structure. In Fred R, Aharon O. (editors) Methods in Microbiologyvol. 38 Academic Press; 2011; pp.101–129
    [Google Scholar]
  19. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley and Sons; 1991; pp.115–175
    [Google Scholar]
  20. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  23. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  24. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  25. Zhang JY, Liu XY, Liu SJ. Agrococcus terreus sp. nov. and Micrococcus terreus sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2010;60:1897–1903 [CrossRef][PubMed]
    [Google Scholar]
  26. Kageyama A, Morisaki K, Omura S, Takahashi Y. Arthrobacter oryzae sp. nov. and Arthrobacter humicola sp. nov. Int J Syst Evol Microbiol 2008;58:53–56 [CrossRef][PubMed]
    [Google Scholar]
  27. Busse HJ. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. Int J Syst Evol Microbiol 2016;66:9–37 [CrossRef][PubMed]
    [Google Scholar]
  28. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010;60:249–266 [CrossRef][PubMed]
    [Google Scholar]
  29. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  30. Stackebrandt E, Koch C, Gvozdiak O, Schumann P. Taxonomic dissection of the genus Micrococcus: kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 1995;45:682–692 [CrossRef][PubMed]
    [Google Scholar]
  31. Bendinger B, Kroppenstedt RM, Klatte S, Altendorf K. Chemotaxonomic differentiation of coryneform bacteria isolated from biofilters. Int J Syst Bacteriol 1992;42:474–486 [CrossRef][PubMed]
    [Google Scholar]
  32. Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME et al. Bergey’s Manual of Systematic Bacteriology, 2nd ed. New York: Springer-Verlag; 2012;[CrossRef]
    [Google Scholar]
  33. Paściak M, Ekiel I, Grzegorzewicz A, Mordarska H, Gamian A. Structure of the major glycolipid from Rothia dentocariosa. Biochim Biophys Acta 2002;1594:199–205 [CrossRef][PubMed]
    [Google Scholar]
  34. Pakkiri LS, Wolucka BA, Lubert EJ, Waechter CJ. Structural and topological studies on the lipid-mediated assembly of a membrane-associated lipomannan in Micrococcus luteus. Glycobiology 2004;14:73–81 [CrossRef][PubMed]
    [Google Scholar]
  35. Pukall R, Schumann P, Schütte C, Gols R, Dicke M. Acaricomes phytoseiuli gen. nov., sp. nov., isolated from the predatory mite Phytoseiulus persimilis. Int J Syst Evol Microbiol 2006;56:465–469 [CrossRef][PubMed]
    [Google Scholar]
  36. Yassin AF, Hupfer H, Siering C, Klenk HP, Schumann P. Auritidibacter ignavus gen. nov., sp. nov., of the family Micrococcaceae isolated from an ear swab of a man with otitis externa, transfer of the members of the family Yaniellaceae Li et al. 2008 to the family Micrococcaceae and emended description of the suborder Micrococcineae. Int J Syst Evol Microbiol 2011;61:223–230 [CrossRef][PubMed]
    [Google Scholar]
  37. Arora PK, Jain RK. Arthrobacter nitrophenolicus sp. nov. a new 2-chloro-4-nitrophenol degrading bacterium isolated from contaminated soil. 3 Biotech 2013;3:29–32 [CrossRef][PubMed]
    [Google Scholar]
  38. Altenburger P, Kämpfer P, Schumann P, Steiner R, Lubitz W et al. Citricoccus muralis gen. nov., sp. nov., a novel actinobacterium isolated from a medieval wall painting. Int J Syst Evol Microbiol 2002;52:2095–2100 [CrossRef][PubMed]
    [Google Scholar]
  39. Lo N, Lee SH, Jin HM, Jung JY, Schumann P et al. Garicola koreensis gen. nov., sp. nov., isolated from saeu-jeot, traditional korean fermented shrimp. Int J Syst Evol Microbiol 2015;65:1015–1021 [CrossRef][PubMed]
    [Google Scholar]
  40. Stackebrandt E, Fowler VJ, Fiedler F, Seiler H. Taxonomic studies on Arthrobacter nicotianae and related taxa: description of Arthrobacter uratoxydans sp. nov. and Arthrobacter sulfureus sp. nov. and reclassification of Brevibacterium protophormiae as Arthrobacter protophormiae comb. nov. Syst Appl Microbiol 1983;4:470–486 [CrossRef][PubMed]
    [Google Scholar]
  41. Collins MD, Kroppenstedt RM. Lipid composition as a guide to the classification of some coryneform bacteria - containing an A4α type peptidoglycan (Schleifer and kandler). Syst Appl Microbiol 1983;4:95–104 [CrossRef][PubMed]
    [Google Scholar]
  42. Baik KS, Lim CH, Park SC, Choe HN, Kim HJ et al. Zhihengliuella aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2011;61:1671–1676 [CrossRef][PubMed]
    [Google Scholar]
  43. Prakash O, Sharma A, Nimonkar Y, Shouche YS. Proposal for creation of a new genus Neomicrococcus gen. nov. to accommodate Zhihengliuella aestuarii Baik et al. 2011 and Micrococcus lactis Chittpurna et al. 2011 as Neomicrococcus aestuarii comb. nov. and Neomicrococcus lactis comb. nov. Int J Syst Evol Microbiol 2015;65:3771–3776 [CrossRef][PubMed]
    [Google Scholar]
  44. Yamada Y, Inouye G, Tahara Y, Kondo K. The menaquinone system in the classification of coryneform and nocardioform bacteria and related organisms. J Gen Appl Microbiol 1976;22:203–214 [CrossRef]
    [Google Scholar]
  45. Kodama Y, Yamamoto H, Amano N, Amachi T. Reclassification of two strains of Arthrobacter oxydans and proposal of Arthrobacter nicotinovorans sp. nov. Int J Syst Bacteriol 1992;42:234–239 [CrossRef][PubMed]
    [Google Scholar]
  46. Funke G, Hutson RA, Bernard KA, Pfyffer GE, Wauters G et al. Isolation of Arthrobacter spp. from clinical specimens and description of Arthrobacter cumminsii sp. nov. and Arthrobacter woluwensis sp. nov. J Clin Microbiol 1996;34:2356–2363[PubMed]
    [Google Scholar]
  47. Sanders JE, Fryer JL. Renibacterium salmoninarum gen. nov., sp. nov., the Causative Agent of Bacterial Kidney Disease in Salmonid Fishes. Int J Syst Bacteriol 1980;30:496–502 [CrossRef]
    [Google Scholar]
  48. Embley TM, Goodfellow M, Minnikin DE, Austin B. Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Renibacterium salmoninarum. J Appl Bacteriol 1983;55:31–37 [CrossRef]
    [Google Scholar]
  49. Collins MD, Shah HN. Fatty acid, menaquinone and polar lipid composition of Rothia dentocariosa. Arch Microbiol 1984;137:247–249 [CrossRef]
    [Google Scholar]
  50. Collins MD, Hutson RA, Båverud V, Falsen E. Characterization of a Rothia-like organism from a mouse: description of Rothia nasimurium sp. nov. and reclassification of Stomatococcus mucilaginosus as Rothia mucilaginosa comb. nov. Int J Syst Evol Microbiol 2000;50 Pt 3:1247–1251 [CrossRef][PubMed]
    [Google Scholar]
  51. Gustafson KB, Sedgwick A, Coykendall AL. Guanine-plus-cytosine content of Rothia dentocariosa. Int J Syst Bacteriol 1985;35:533–534 [CrossRef]
    [Google Scholar]
  52. Zhou Y, Wei W, Wang X, Lai R. Proposal of Sinomonas flava gen. nov., sp. nov., and description of Sinomonas atrocyanea comb. nov. to accommodate Arthrobacter atrocyaneus. Int J Syst Evol Microbiol 2009;59:259–263 [CrossRef][PubMed]
    [Google Scholar]
  53. Vaishampayan P, Moissl-Eichinger C, Pukall R, Schumann P, Spröer C et al. Description of Tersicoccus phoenicis gen. nov., sp. nov. isolated from spacecraft assembly clean room environments. Int J Syst Evol Microbiol 2013;63:2463–2471 [CrossRef][PubMed]
    [Google Scholar]
  54. Li WJ, Chen HH, Xu P, Zhang YQ, Schumann P et al. Yania halotolerans gen. nov., sp. nov., a novel member of the suborder Micrococcineae from saline soil in China. Int J Syst Evol Microbiol 2004;54:525–531 [CrossRef][PubMed]
    [Google Scholar]
  55. Zhang YQ, Schumann P, Yu LY, Liu HY, Zhang YQ et al. Zhihengliuella halotolerans gen. nov., sp. nov., a novel member of the family Micrococcaceae. Int J Syst Evol Microbiol 2007;57:1018–1023 [CrossRef][PubMed]
    [Google Scholar]
  56. Chittpurna, Singh PK, Verma D, Pinnaka AK, Mayilraj S et al. Micrococcus lactis sp. nov., isolated from dairy industry waste. Int J Syst Evol Microbiol 2011;61:2832–2836 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002018
Loading
/content/journal/ijsem/10.1099/ijsem.0.002018
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error