1887

Abstract

A Gram-stain negative, rod-shaped, aerobic bacterial strain, BII-R7, was isolated during a study targeting the culture-dependent microbial diversity occurring in bentonite formations from southern Spain. Comparative 16S rRNA gene sequence analysis showed that BII-R7 represented a member of the genus Stenotrophomonas (class Gammaproteobacteria ), and was related most closely to Stenotrophomonas rhizophila e-p10 (99.2 % sequence similarity), followed by Stenotrophomonas pavanii ICB 89 (98.5 %), Stenotrophomonas maltophilia IAM 12423, Stenotrophomonas chelatiphaga LPM-5 and Stenotrophomonas tumulicola T5916-2-1b (all 98.3 %). Pairwise sequence similarities to all other type strains of species of the genus Stenotrophomonas were below 98 %. Genome-based calculations (orthologous average nucleotide identity, original average nucleotide identity, genome-to-genome distance and DNA G+C percentage) indicated clearly that the isolate represents a novel species within this genus. Different phenotypic analyses, such as the detection of a quinone system composed of the major compound ubiquinone Q-8 and a fatty acid profile with iso-C15 : 0 and anteiso-C15 : 0 as major components, supported this finding at the same time as contributing to a comprehensive characterization of BII-R7. Based on this polyphasic approach comprising phenotypic and genotypic/molecular characterization, BII-R7 can be differentiated clearly from its phylogenetic neighbours, establishing a novel species for which the name Stenotrophomonas bentonitica sp. nov. is proposed with BII-R7 as the type strain (=LMG 29893=CECT 9180=DSM 103927).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002016
2017-08-18
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2779.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002016&mimeType=html&fmt=ahah

References

  1. López-Fernández M, Fernández-Sanfrancisco O, Moreno-García A, Martín-Sánchez I, Sánchez-Castro I et al. Microbial communities in bentonite formations and their interactions with uranium. Applied Geochemistry 2014;49:77–86 [CrossRef]
    [Google Scholar]
  2. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985;49:1–7[PubMed]
    [Google Scholar]
  3. Miller JH. Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1972
    [Google Scholar]
  4. Ikemoto S, Suzuki K, Kaneko T, Komagata K. Characterization of strains of Pseudomonas maltophilia which do not require methionine. Int J Syst Bacteriol 1980;30:437–447 [CrossRef]
    [Google Scholar]
  5. Binks PR, Nicklin S, Bruce NC. Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Stenotrophomonas maltophilia PB1. Appl Environ Microbiol 1995;61:1318–1322[PubMed]
    [Google Scholar]
  6. Merroun ML, Selenska-Pobell S. Bacterial interactions with uranium: an environmental perspective. J Contam Hydrol 2008;102:285–295 [CrossRef][PubMed]
    [Google Scholar]
  7. Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L et al. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 2009;7:514–525 [CrossRef][PubMed]
    [Google Scholar]
  8. Ghosh A, Saha PD, das Saha P. Optimization of copper bioremediation by Stenotrophomonas maltophilia PD2. J Environ Chem Eng 2013;1:159–163 [CrossRef]
    [Google Scholar]
  9. Ge S, Ge SC. Simultaneous Cr(VI) reduction and Zn(II) biosorption by Stenotrophomonas sp. and constitutive expression of related genes. Biotechnol Lett 2016;38:877–884 [CrossRef][PubMed]
    [Google Scholar]
  10. Berg G, Ballin G. Bacterial antagonists to Verticillium dahliae kleb. J Phytopathol 1994;141:99–110 [CrossRef]
    [Google Scholar]
  11. Nakayama T, Homma Y, Hashidoko Y, Mizutani J, Tahara S. Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease. Appl Environ Microbiol 1999;65:4334–4339[PubMed]
    [Google Scholar]
  12. Palleroni NJ, Bradbury JF. Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int J Syst Bacteriol 1993;43:606–609 [CrossRef][PubMed]
    [Google Scholar]
  13. Moore ER, Krüger AS, Hauben L, Seal SE, Daniels MJ et al. 16S rRNA gene sequence analyses and inter- and intrageneric relationships of Xanthomonas species and Stenotrophomonas maltophilia. FEMS Microbiol Lett 1997;151:145–153 [CrossRef][PubMed]
    [Google Scholar]
  14. Finkmann W, Altendorf K, Stackebrandt E, Lipski A. Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 2000;50 Pt 1:273–282 [CrossRef][PubMed]
    [Google Scholar]
  15. Assih EA, Ouattara AS, Thierry S, Cayol JL, Labat M et al. Stenotrophomonas acidaminiphila sp. nov., a strictly aerobic bacterium isolated from an upflow anaerobic sludge blanket (UASB) reactor. Int J Syst Evol Microbiol 2002;52:559–568 [CrossRef][PubMed]
    [Google Scholar]
  16. Wolf A, Fritze A, Hagemann M, Berg G. Stenotrophomonas rhizophila sp. nov., a novel plant-associated bacterium with antifungal properties. Int J Syst Evol Microbiol 2002;52:1937–1944 [CrossRef][PubMed]
    [Google Scholar]
  17. Yang HC, Im WT, Kang MS, Shin DY, Lee ST et al. Stenotrophomonas koreensis sp. nov., isolated from compost in South Korea. Int J Syst Evol Microbiol 2006;56:81–84 [CrossRef][PubMed]
    [Google Scholar]
  18. Heylen K, Vanparys B, Peirsegaele F, Lebbe L, de Vos P. Stenotrophomonas terrae sp. nov. and Stenotrophomonas humi sp. nov., two nitrate-reducing bacteria isolated from soil. Int J Syst Evol Microbiol 2007;57:2056–2061 [CrossRef][PubMed]
    [Google Scholar]
  19. Kaparullina E, Doronina N, Chistyakova T, Trotsenko Y. Stenotrophomonas chelatiphaga sp. nov., a new aerobic EDTA-degrading bacterium. Syst Appl Microbiol 2009;32:157–162 [CrossRef][PubMed]
    [Google Scholar]
  20. Kim HB, Srinivasan S, Sathiyaraj G, Quan LH, Kim SH et al. Stenotrophomonas ginsengisoli sp. nov., isolated from a ginseng field. Int J Syst Evol Microbiol 2010;60:1522–1526 [CrossRef][PubMed]
    [Google Scholar]
  21. Yi H, Srinivasan S, Kim MK. Stenotrophomonas panacihumi sp. nov., isolated from soil of a ginseng field. J Microbiol 2010;48:30–35 [CrossRef][PubMed]
    [Google Scholar]
  22. Lee M, Woo SG, Chae M, Shin MC, Jung HM et al. Stenotrophomonas daejeonensis sp. nov., isolated from sewage. Int J Syst Evol Microbiol 2011;61:598–604 [CrossRef][PubMed]
    [Google Scholar]
  23. Ramos PL, van Trappen S, Thompson FL, Rocha RC, Barbosa HR et al. Screening for endophytic nitrogen-fixing bacteria in Brazilian sugar cane varieties used in organic farming and description of Stenotrophomonas pavanii sp. nov. Int J Syst Evol Microbiol 2011;61:926–931 [CrossRef][PubMed]
    [Google Scholar]
  24. Handa Y, Tazato N, Kigawa R, Koide T, Nagatsuka Y et al. Stenotrophomonas tumulicola sp. nov., a major contaminant of the stone chamber interior in the Takamatsuzuka Tumulus. Int J Syst Evol Microbiol 2016;66:1119–1124 [CrossRef]
    [Google Scholar]
  25. Svensson-Stadler LA, Mihaylova SA, Moore ER. Stenotrophomonas interspecies differentiation and identification by gyrB sequence analysis. FEMS Microbiol Lett 2012;327:15–24 [CrossRef][PubMed]
    [Google Scholar]
  26. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  27. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  28. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  29. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22:2688–2690 [CrossRef][PubMed]
    [Google Scholar]
  30. Felsenstein J. Phylip (Phylogeny Inference package), 3.6. Department of Genome Sciences, University of Washington, Seattle; 2005
    [Google Scholar]
  31. Jukes TH, Cantor CR. Evolution of the protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–132[CrossRef]
    [Google Scholar]
  32. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: [CrossRef][PubMed]
    [Google Scholar]
  33. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  34. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  35. Patil PP, Midha S, Kumar S, Patil PB. Genome sequence of type strains of genus Stenotrophomonas. Front Microbiol 2016;7:309 [CrossRef][PubMed]
    [Google Scholar]
  36. Lee I, Kim YO, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2015;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  37. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  38. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 2000;50:1563–1589 [CrossRef][PubMed]
    [Google Scholar]
  39. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  40. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  41. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  42. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P et al. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 2002;52:1043–1047 [CrossRef][PubMed]
    [Google Scholar]
  43. Komagata K. Bacteria (1) – the aerobic bacteria. In Hasegawa T. (editor) Classification and Identification of Microorganismsvol. 2 Tokyo, Japan: Gakkai Shuppan (in Japanese); 1985; pp.99–161
    [Google Scholar]
  44. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956;178:703 [CrossRef][PubMed]
    [Google Scholar]
  45. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991;21:227–251 [CrossRef][PubMed]
    [Google Scholar]
  46. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the proteobacteria. Syst Appl Microbiol 1988;11:1–8 [CrossRef]
    [Google Scholar]
  47. Stolz A, Busse HJ, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007;57:572–576 [CrossRef][PubMed]
    [Google Scholar]
  48. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997;47:698–708 [CrossRef]
    [Google Scholar]
  49. Auling G, Busse H-J, Pilz F, Webb L, Kneifel H et al. Rapid differentiation, by polyamine analysis, of Xanthomonas strains from phytopathogenic pseudomonads and other members of the class Proteobacteria interacting with plants. Int J Syst Bacteriol 1991;41:223–228 [CrossRef]
    [Google Scholar]
  50. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  51. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  52. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996;47:39–52 [CrossRef]
    [Google Scholar]
  53. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  54. Brosius J, Dull TJ, Sleeter DD, Noller HF. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 1981;148:107–127 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002016
Loading
/content/journal/ijsem/10.1099/ijsem.0.002016
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error