1887

Abstract

Three strains representing a novel species of the Ogataea clade were isolated by W. T. Starmer and H. J. Phaff from rotting tissue of Opuntia phaeacantha in Arizona, USA. Analyses of the sequences of the D1/D2 LSU rRNA gene, ITS1-5.8S-ITS2, and translation elongation factor-1α (EF-1 α) showed that this novel species belongs to the Ogataea polymorpha complex formed by Ogataea angusta, Ogataea parapolymorpha and Ogataea polymorpha. The novel species differs from these species by 4–5 nucleotide substitutions in the D1/D2 domain, by 28–29 nucleotide substitutions in the EF-α gene and by 18–24 nucleotide substitutions and 2–5 indels in the ITS–5.8S region. The name Ogataea haglerorum sp. nov. is proposed for this novel species. The type strain is VKPM Y-2583 (=CBS 14645=UCDFST 17-101). The Mycobank number is MB 819772.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002012
2017-07-19
2019-08-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2465.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002012&mimeType=html&fmt=ahah

References

  1. Kurtzman CP. Ogataea Y. Yamada, K. Maeda & Mikata (1994). In Kurtzman CP, Fell JW, Boekhout T. (editors) The Yeasts: A Taxonomic Study, 5th ed. Amsterdam: Elsevier; 2011; pp. 645– 671 [CrossRef]
    [Google Scholar]
  2. Santos AR, Faria ES, Lachance MA, Rosa CA. Ogataea mangiferae sp. nov., a methylotrophic yeast isolated from mango leaves. Int J Syst Evol Microbiol 2015; 65: 1855– 1859 [CrossRef] [PubMed]
    [Google Scholar]
  3. Gleeson MA, Sudbery PE. Genetic analysis in the methylotrophic yeastHansenula polymorpha. Yeast 1988; 4: 293– 303 [CrossRef]
    [Google Scholar]
  4. Naumov GI, Naumova ES, Kondratieva VI, Bulat SA, Mironenko NV et al. Genetic and molecular delineation of three sibling species in the Hansenula polymorpha complex. Syst Appl Microbiol 1997; 20: 50– 56 [CrossRef]
    [Google Scholar]
  5. Blandin G, Llorente B, Malpertuy A, Wincker P, Artiguenave F et al. Genomic exploration of the hemiascomycetous yeasts: 13. Pichia angusta. FEBS Lett 2000; 487: 76– 81 [CrossRef] [PubMed]
    [Google Scholar]
  6. Gellissen G. Hansenula polymorpha: Biology and Applications Weinheim: Wiley-VCH; 2002; [CrossRef]
    [Google Scholar]
  7. Ramezani-Rad M, Hollenberg CP, Lauber J, Wedler H, Griess E et al. The Hansenula polymorpha (strain CBS4732) genome sequencing and analysis. FEMS Yeast Res 2003; 4: 207– 215 [PubMed] [CrossRef]
    [Google Scholar]
  8. Kunze G, Hang AH, Gellissen G. Hansenula polymorpha (Pichia angusta): biology and applications. In Satyanarayana T, Kunze G. (editors) Yeast Biotechnology: Diversity and Potential Biotechnological Applications in Yeasts Berlin: Springer; 2009; pp. 47– 62 [CrossRef]
    [Google Scholar]
  9. Wickerham LJ. Taxonomy of Yeasts, Technical Bulletin 1029 Washington, DC: U.S. Department of Agriculture; 1951
    [Google Scholar]
  10. de Morais JOF, Maia MHD. Estudos de microorganismos encocentrados em leitos de despéjos de caldas de destilarias de Pernambuco II. Uma nova espécie de Hansenula, H. polymorpha. An Esc Super Quim Univ Recife 1959; 1: 15– 20
    [Google Scholar]
  11. Teunisson DJ, Hall HH, Wickerham LJ. Hansenula angusta, an excellent species for demonstration of the coexistence of haploid and diploid cells in a homothallic yeast. Mycologia 1960; 52: 184– 188 [CrossRef]
    [Google Scholar]
  12. Wickerham LJ. Hansenula H. et P. Sydow. In Lodder J. (editor) The Yeasts, A Taxonomic Study, 2nd ed. Amsterdam: North-Holland; 1970; pp. 226– 315
    [Google Scholar]
  13. Kurtzman CP. Synonomy of the yeast genera Hansenula and Pichia demonstrated through comparisons of deoxyribonucleic acid relatedness. Antonie van Leeuwenhoek 1984; 50: 209– 217 [CrossRef] [PubMed]
    [Google Scholar]
  14. Yamada Y, Maeda K, Mikata K. The phylogenetic relationships of the hat-shaped ascospore-forming, nitrate-assimilating Pichia species, formerly classified in the genus Hansenula Sydow et Sydow, based on the partial sequences of 18S and 26S ribosomal RNAs (Saccharomycetaceae): the proposals of three new genera, Ogataea, Kuraishia, and Nakazawaea. Biosci Biotechnol Biochem 1994; 58: 1245– 1257 [CrossRef] [PubMed]
    [Google Scholar]
  15. Suh SO, Zhou JJ. Methylotrophic yeasts near Ogataea (Hansenula) polymorpha: a proposal of Ogataea angusta comb. nov. and Candida para polymorpha sp. nov. FEMS Yeast Res 2010; 10: no– 638 [CrossRef] [PubMed]
    [Google Scholar]
  16. Kurtzman CP. A new methanol assimilating yeast, Ogataea parapolymorpha, the ascosporic state of Candida parapolymorpha. Antonie van Leeuwenhoek 2011; 100: 455– 462 [CrossRef] [PubMed]
    [Google Scholar]
  17. Phaff HJ. Biology of yeasts other than Saccharomyces. In Demain AL, Solomon NA. (editors) Biology of Industrial Microorganisms London: The Benjamin/Cumming; 1985; pp. 537– 562
    [Google Scholar]
  18. Starmer WT, Ganter PF, Phaff HJ. Quantum and continuous evolution of DNA base composition in the yeast genus Pichia. Evolution 1986; 40: 1263– 1274 [CrossRef] [PubMed]
    [Google Scholar]
  19. Starmer WT, Lachance MA, Phaff HJ, Heed WB. The biogeography of yeasts associated with decaying cactus tissue in North America, the Caribbean, and northern Venezuela. Evol Biol 1990; 24: 253– 296
    [Google Scholar]
  20. Lachance M-A, Starmer WT, Phaff HJ. Identification of yeasts found in decaying cactus tissue. Can J Microbiol 1988; 34: 1025– 1036 [CrossRef]
    [Google Scholar]
  21. Yarrow D. Methods for the isolation, maintenance and identification of yeasts. In Kurtzman CP, Fell JW. (editors) The Yeasts, A Taxonomic Study, 4th ed. Amsterdam: Elsevier; 1998; pp. 77– 100 [CrossRef]
    [Google Scholar]
  22. Kurtzman CP, Robnett CJ. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 1998; 73: 331– 371 [CrossRef] [PubMed]
    [Google Scholar]
  23. Kurtzman CP, Robnett CJ. Phylogenetic relationships among yeasts of the 'Saccharomyces complex' determined from multigene sequence analyses. FEMS Yeast Res 2003; 3: 417– 432 [CrossRef] [PubMed]
    [Google Scholar]
  24. Kurtzman CP, Robnett CJ. Systematics of methanol assimilating yeasts and neighboring taxa from multigene sequence analysis and the proposal of Peterozyma gen. nov., a new member of the Saccharomycetales. FEMS Yeast Res 2010; 10: 353– 361 [CrossRef] [PubMed]
    [Google Scholar]
  25. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  26. Barker JS, East PD, Phaff HJ, Miranda M. The ecology of the yeast flora in necrotic Opuntia cacti and of associated Drosophila in Australia. Microb Ecol 1984; 10: 379– 399 [CrossRef] [PubMed]
    [Google Scholar]
  27. Starmer WT, Phaff HJ, Miranda M, Miller MW, Heed WB. The yeast flora associated with the decaying stems of columnar cacti and Drosophila in North America. Evol Biol 1982; 14: 269– 295
    [Google Scholar]
  28. Phaff HJ, Miller MW, Shifrine M. The taxonomy of yeasts isolated from Drosophila in the Yosemite region of California. Antonie van Leeuwenhoek 1956; 22: 145– 161 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002012
Loading
/content/journal/ijsem/10.1099/ijsem.0.002012
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error