1887

Abstract

A Gram-stain-positive actinobacterium, designated as strain 2-36, was isolated from sludge of a sewage outlet in a manganese mine. Phylogenetic analysis of 16S rRNA genes assigned strain 2-36 in a single lineage in the family Geodermatophilaceae and closely related to Modestobacter roseus KLBMP 1279 (93.8 % similarity), Blastococcus saxobsidens BC444 (93.1 %) and Geodermatophilus aquaeductus BMG801 (92.8 %). It contained iso-C16 : 0, iso-C15 : 0, C17 : 1ω6c, iso-C14 : 0 and summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) as the major fatty acids (>5 %), with MK-9(H4), MK-8(H4) and MK-9(H6) as the quinones. The cell wall contained meso-diaminopimelic acid as the diagnostic diamino acid and the DNA G+C content was 70.1 mol%. The polar lipids were diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside, an unknown glycolipid, an unknown aminophospholipid and two unknown phospholipids. Compared to closely related strains, strain 2-36 showed distinguishing characteristics, such as the distinct phylogenetic lineage, positive result for phenylacetic acid assimilation and negative result for α-glucosidase and having C17 : 1ω6c and iso-C14 : 0 as the major fatty acids. On the basis of the polyphasic analyses, strain 2-36 represents a novel species of a new genus within the family Geodermatophilaceae, for which the name Cumulibacter manganitolerans gen. nov., sp. nov. is proposed. The type strain of 'Cumulibacter manganitolerans' is 2-36 (=CCTCC AA 2016026=DSM 103787).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002004
2017-08-15
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2646.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002004&mimeType=html&fmt=ahah

References

  1. Normand P. Geodermatophilaceae fam. nov., a formal description. Int J Syst Evol Microbiol 2006;56:2277–2278 [CrossRef][PubMed]
    [Google Scholar]
  2. Parte AC. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  3. Montero-Calasanz MC, Göker M, Pötter G, Rohde M, Spröer C et al. Geodermatophilus arenarius sp. nov., a xerophilic actinomycete isolated from Saharan desert sand in Chad. Extremophiles 2012;16:903–909 [CrossRef][PubMed]
    [Google Scholar]
  4. Montero-Calasanz MC, Göker M, Broughton WJ, Cattaneo A, Favet J et al. Geodermatophilus tzadiensis sp. nov., a UV radiation-resistant bacterium isolated from sand of the Saharan desert. Syst Appl Microbiol 2013;36:177–182 [CrossRef][PubMed]
    [Google Scholar]
  5. Montero-Calasanz MC, Göker M, Pötter G, Rohde M, Spröer C et al. Geodermatophilus africanus sp. nov., a halotolerant actinomycete isolated from Saharan desert sand. Antonie van Leeuwenhoek 2013;104:207–216 [CrossRef][PubMed]
    [Google Scholar]
  6. Montero-Calasanz MC, Göker M, Pötter G, Rohde M, Spröer C et al. Geodermatophilus normandii sp. nov., isolated from Saharan desert sand. Int J Syst Evol Microbiol 2013;63:3437–3443 [CrossRef][PubMed]
    [Google Scholar]
  7. Montero-Calasanz MC, Göker M, Pötter G, Rohde M, Spröer C et al. Geodermatophilus saharensis sp. nov., isolated from sand of the Saharan desert in Chad. Arch Microbiol 2013;195:153–159 [CrossRef][PubMed]
    [Google Scholar]
  8. Montero-Calasanz MC, Göker M, Pötter G, Rohde M, Spröer C et al. Geodermatophilus telluris sp. nov., an actinomycete isolated from Saharan desert sand. Int J Syst Evol Microbiol 2013;63:2254–2259 [CrossRef][PubMed]
    [Google Scholar]
  9. del Carmen Montero-Calasanz M, Göker M, Rohde M, Schumann P, Pötter G et al. Geodermatophilus siccatus sp. nov., isolated from arid sand of the Saharan desert in Chad. Antonie van Leeuwenhoek 2013;103:449–456 [CrossRef][PubMed]
    [Google Scholar]
  10. Reddy GS, Potrafka RM, Garcia-Pichel F. Modestobacter versicolor sp. nov., an actinobacterium from biological soil crusts that produces melanins under oligotrophy, with emended descriptions of the genus Modestobacter and Modestobacter multiseptatus Mevs et al. 2000. Int J Syst Evol Microbiol 2007;57:2014–2020 [CrossRef][PubMed]
    [Google Scholar]
  11. Zhang YQ, Chen J, Liu HY, Zhang YQ, Li WJ et al. Geodermatophilus ruber sp. nov., isolated from rhizosphere soil of a medicinal plant. Int J Syst Evol Microbiol 2011;61:190–193 [CrossRef][PubMed]
    [Google Scholar]
  12. Jin L, Lee HG, Kim HS, Ahn CY, Oh HM. Geodermatophilus soli sp. nov. and Geodermatophilus terrae sp. nov., two actinobacteria isolated from grass soil. Int J Syst Evol Microbiol 2013;63:2625–2629 [CrossRef][PubMed]
    [Google Scholar]
  13. Xiao J, Luo Y, Xu J, Xie S, Xu J. Modestobacter marinus sp. nov., a psychrotolerant actinobacterium from deep-sea sediment, and emended description of the genus Modestobacter. Int J Syst Evol Microbiol 2011;61:1710–1714 [CrossRef][PubMed]
    [Google Scholar]
  14. Qu JH, Hui M, Qu JY, Wang FF, Li HF et al. Geodermatophilus taihuensis sp. nov., isolated from the interfacial sediment of a eutrophic lake. Int J Syst Evol Microbiol 2013;63:4108–4112 [CrossRef][PubMed]
    [Google Scholar]
  15. Zhu WY, Zhang JL, Qin YL, Xiong ZJ, Zhang DF et al. Blastococcus endophyticus sp. nov., an actinobacterium isolated from Camptotheca acuminata. Int J Syst Evol Microbiol 2013;63:3269–3273 [CrossRef][PubMed]
    [Google Scholar]
  16. Qin S, Bian GK, Zhang YJ, Xing K, Cao CL et al. Modestobacter roseus sp. nov., an endophytic actinomycete isolated from the coastal halophyte Salicornia europaea Linn., and emended description of the genus Modestobacter. Int J Syst Evol Microbiol 2013;63:2197–2202 [CrossRef][PubMed]
    [Google Scholar]
  17. Trujillo ME, Goodfellow M, Busarakam K, Riesco R. Modestobacter lapidis sp. nov. and Modestobacter muralis sp. nov., isolated from a deteriorated sandstone historic building in Salamanca, Spain. Antonie van Leeuwenhoek 2015;108:311–320 [CrossRef][PubMed]
    [Google Scholar]
  18. Mevs U, Stackebrandt E, Schumann P, Gallikowski CA, Hirsch P. Modestobacter multiseptatus gen. nov., sp. nov., a budding actinomycete from soils of the Asgard Range (Transantarctic mountains). Int J Syst Evol Microbiol 2000;50 Pt 1:337–346 [CrossRef][PubMed]
    [Google Scholar]
  19. Sambrook JF, Russell DW. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 2001
    [Google Scholar]
  20. Fan H, Su C, Wang Y, Yao J, Zhao K et al. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. J Appl Microbiol 2008;105:529–539 [CrossRef][PubMed]
    [Google Scholar]
  21. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977;74:5463–5467 [CrossRef][PubMed]
    [Google Scholar]
  22. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  23. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  25. Zhang W, Sun Z. Random local neighbor joining: a new method for reconstructing phylogenetic trees. Mol Phylogenet Evol 2008;47:117–128 [CrossRef][PubMed]
    [Google Scholar]
  26. Weng JF, Thomas DA, Mareels I, Parsimony M. Maximum parsimony, substitution model, and probability phylogenetic trees. J Comput Biol 2011;18:67–80 [CrossRef][PubMed]
    [Google Scholar]
  27. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  28. Urzì C, Salamone P, Schumann P, Rohde M, Stackebrandt E. Blastococcus saxobsidens sp. nov., and emended descriptions of the genus Blastococcus ahrens and Moll 1970 and Blastococcus aggregatus Ahrens and Moll 1970. Int J Syst Evol Microbiol 2004;54:253–259 [CrossRef][PubMed]
    [Google Scholar]
  29. Hezbri K, Ghodhbane-Gtari F, del Carmen Montero-Calasanz M, Sghaier H, Rohde M et al. Geodermatophilus aquaeductus sp. nov., isolated from the ruins of hadrian's aqueduct. Antonie van Leeuwenhoek 2015;108:41–50 [CrossRef][PubMed]
    [Google Scholar]
  30. Tamura T, Hayakawa M, Hatano K. Sporichthya brevicatena sp. nov. Int J Syst Bacteriol 1999;49:1779–1784 [CrossRef][PubMed]
    [Google Scholar]
  31. Luedemann GM. Geodermatophilus, a new genus of the Dermatophilaceae (Actinomycetales). J Bacteriol 1968;96:1848–1858[PubMed]
    [Google Scholar]
  32. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  33. Tarrand JJ, Gröschel DH. Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 1982;16:772–774[PubMed]
    [Google Scholar]
  34. Mesban M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Evol Microbiol 1989;39:159–167
    [Google Scholar]
  35. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  36. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  37. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA. (editor) Methods for General and Molecular Microbiology Washington, DC: ASM Press; 2007; pp.330–393
    [Google Scholar]
  38. Wu YH, Xamxidin M, Meng FX, Zhang XQ, Wang CS et al. Marinirhabdus gelatinilytica gen. nov., sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2016;66:3095–3101 [CrossRef][PubMed]
    [Google Scholar]
  39. Dietz A, Thayer DW. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. (editors) Actinomycete Taxonomy Arlington, VA: Society for Industrial Microbiology; 1980; pp.22–291
    [Google Scholar]
  40. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983;29:319–322 [CrossRef]
    [Google Scholar]
  41. Normand P, Orso S, Cournoyer B, Jeannin P, Chapelon C et al. Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int J Syst Bacteriol 1996;46:1–9 [CrossRef][PubMed]
    [Google Scholar]
  42. Nie GX, Ming H, Li S, Zhou EM, Cheng J et al. Geodermatophilus nigrescens sp. nov., isolated from a dry-hot valley. Antonie van Leeuwenhoek 2012;101:811–817 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002004
Loading
/content/journal/ijsem/10.1099/ijsem.0.002004
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error