1887

Abstract

A Gram-reaction-negative, aerobic, non-motile, short-rod-shaped bacterium (THG-T2.31) was isolated from the rhizosphere of Mugunghwa (Hibiscus syriacus). Growth occurred at 10–35 °C (optimum 28 °C), at pH 5.0–8.0 (optimum pH 7.0) and with 0–4.0 % NaCl (optimum 1.0 %). Based on 16S rRNA gene sequence analysis, the nearest phylogenetic neighbours of strain THG-T2.31 were identified as Paracoccus marcusii DSM 11574 (98.4 %), Paracoccus haeundaensis BC74171 (98.3 %), Paracoccus carotinifaciens E-396 (98.3 %), Paracoccus aestuarii B7 (97.3 %) and Paracoccus seriniphilus MBT-A4 (97.0 %); levels of similarity with the type strains of other species of the genus Paracoccus were lower than 97.0 %. The polar lipids were diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, one unidentified aminolipid and two unidentified phospholipids. The major fatty acids were C16 : 0, C18 : 0, C10 : 0 3-OH, and C18 : 1 ω7c. The quinone was ubiquinone-10 (Q-10). The DNA G+C content of strain THG-T2.31 was 69.1 mol%. DNA–DNA hybridization values between strain THG-T2.31 and P. marcusii DSM 11574, P. haeundaensis BC74171, P. carotinifaciens E-396, P. aestuarii B7 and P. seriniphilus MBT-A4 were 38.9 % (34.9 %, reciprocal analysis), 29.1 % (23.5 %), 28.0 % (19.7 %), 18.9 % (9.3) and 13.1 % (6.2 %). On the basis of the phylogenetic analysis, chemotaxonomic data, physiological characteristics and DNA–DNA hybridization data, strain THG-T2.31 represents a novel species of the genus Paracoccus , for which the name Paracoccus hibiscisoli sp. nov. is proposed. The type strain is THG-T2.31 (=KACC 18933=CCTCC AB 2016182).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001990
2017-07-26
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2452.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001990&mimeType=html&fmt=ahah

References

  1. Davis DH, Doudoroff M, Stanier RY, Mandel M. Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int J Syst Bacteriol 1969; 19: 375– 390 [CrossRef]
    [Google Scholar]
  2. Parte AC. LPSNlist of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42: D613– D616 [CrossRef] [PubMed]
    [Google Scholar]
  3. Zhu S, Zhao Q, Zhang G, Jiang Z, Sheng H et al. Paracoccus tibetensis sp. nov., isolated from Qinghai-Tibet Plateau permafrost. Int J Syst Evol Microbiol 2013; 63: 1902– 1905 [CrossRef] [PubMed]
    [Google Scholar]
  4. Roh SW, Nam YD, Chang HW, Kim KH, Kim MS et al. Paracoccus aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2009; 59: 790– 794 [CrossRef] [PubMed]
    [Google Scholar]
  5. Kämpfer P, Lai WA, Arun AB, Young CC, Rekha PD et al. Paracoccus rhizosphaerae sp. nov., isolated from the rhizosphere of the plant Crossostephium chinense (L.) Makino (Seremban). Int J Syst Evol Microbiol 2012; 62: 2750– 2756 [CrossRef] [PubMed]
    [Google Scholar]
  6. Zheng Q, Wang Y, Chen C, Wang Y, Xia X et al. Paracoccus beibuensis sp. nov., isolated from the South China Sea. Curr Microbiol 2011; 62: 710– 714 [CrossRef] [PubMed]
    [Google Scholar]
  7. Nakamura A. Paracoccus laeviglucosivorans sp. nov., an L-glucose-utilizing bacterium isolated from soil. Int J Syst Evol Microbiol 2015; 65: 3878– 3884 [CrossRef]
    [Google Scholar]
  8. Dominguez-Moñino I, Jurado V, Hermosin B, Saiz-Jimenez C. Paracoccus cavernae sp. nov., isolated from a show cave. Int J Syst Evol Microbiol 2016; 66: 2265– 2270 [CrossRef] [PubMed]
    [Google Scholar]
  9. Park S, Yoon SY, Jung YT, Won SM, Park DS et al. Paracoccus aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66: 2992– 2998 [CrossRef] [PubMed]
    [Google Scholar]
  10. Zhang G, Xian W, Yang J, Liu W, Jiang H et al. Paracoccus gahaiensis sp. nov. isolated from sediment of Gahai Lake, Qinghai-Tibetan Plateau, China. Arch Microbiol 2016; 198: 227– 232 [CrossRef] [PubMed]
    [Google Scholar]
  11. Harker M, Hirschberg J, Oren A. Paracoccus marcusii sp. nov., an orange gram-negative coccus. Int J Syst Bacteriol 1998; 48: 543– 548 [CrossRef] [PubMed]
    [Google Scholar]
  12. Tsubokura A, Yoneda H, Mizuta H. Paracoccus carotinifaciens sp. nov., a new aerobic gram-negative astaxanthin-producing bacterium. Int J Syst Bacteriol 1999; 49: 277– 282 [CrossRef] [PubMed]
    [Google Scholar]
  13. Pukall R, Laroche M, Kroppenstedt RM, Schumann P, Stackebrandt E et al. Paracoccus seriniphilus sp. nov., an L-serine-dehydratase-producing coccus isolated from the marine bryozoan Bugula plumosa. Int J Syst Evol Microbiol 2003; 53: 443– 447 [CrossRef] [PubMed]
    [Google Scholar]
  14. Lee JH, Kim YS, Choi TJ, Lee WJ, Kim YT. Paracoccus haeundaensis sp. nov., a Gram-negative, halophilic, astaxanthin-producing bacterium. Int J Syst Evol Microbiol 2004; 54: 1699– 1702 [CrossRef] [PubMed]
    [Google Scholar]
  15. Ludwig W, Mittenhuber G, Friedrich CG. Transfer of Thiosphaera pantotropha to Paracoccus denitrificans. Int J Syst Bacteriol 1993; 43: 363– 367 [CrossRef] [PubMed]
    [Google Scholar]
  16. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173: 697– 703 [CrossRef] [PubMed]
    [Google Scholar]
  17. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
    [Google Scholar]
  18. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23: 2947– 2948 [CrossRef] [PubMed]
    [Google Scholar]
  19. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41: 95– 98
    [Google Scholar]
  20. Kimura M. The Neutral Theory of Molecular Evolution UK: Cambridge University Press; 1984
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  23. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Biol 1969; 18: 1– 32 [CrossRef]
    [Google Scholar]
  24. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  25. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef]
    [Google Scholar]
  26. Buck JD, Nonstaining BJD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44: 992– 993 [PubMed]
    [Google Scholar]
  27. Yin KZ, Chen F, Lm L. Isolation of the C1-utilization ability bacteria and construction of their genomic library. Biotechnol Bull 2006; 5: 23– 28
    [Google Scholar]
  28. De Vries GE, Harms N, Maurer K, Papendrecht A, Stouthamer AH. Physiological regulation of Paracoccus denitrificans methanol dehydrogenase synthesis and activity. J Bacteriol 1988; 170: 3731– 3737 [CrossRef] [PubMed]
    [Google Scholar]
  29. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52: 1049– 1070 [CrossRef] [PubMed]
    [Google Scholar]
  30. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178: 703 [CrossRef] [PubMed]
    [Google Scholar]
  31. Yan ZF, Lin P, Chu X, Kook M, Li CT et al. Aeromicrobium halotolerans sp. nov., isolated from desert soil sample. Arch Microbiol 2016; 198: 423– 427 [CrossRef] [PubMed]
    [Google Scholar]
  32. Yan ZF, Trinh H, Moya G, Lin P, Li CT et al. Lysobacter rhizophilus sp. nov., isolated from rhizosphere soil of mugunghwa, the national flower of South Korea. Int J Syst Evol Microbiol 2016; 66: 4754– 4759 [CrossRef] [PubMed]
    [Google Scholar]
  33. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
  34. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
    [Google Scholar]
  35. Stabili L, Gravili C, Tredici SM, Piraino S, Talà A et al. Epibiotic Vibrio luminous bacteria isolated from some hydrozoa and bryozoa species. Microb Ecol 2008; 56: 625– 636 [CrossRef] [PubMed]
    [Google Scholar]
  36. Krichevsky M, Moore L, Moore W, Murray R, Stackebrandt E et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37: 463464
    [Google Scholar]
  37. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  38. Collins MD, Jones D. Lipids in the classification and identification of Coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48: 459– 470 [CrossRef]
    [Google Scholar]
  39. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  40. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]
    [Google Scholar]
  41. Hu HY, Lim BR, Goto N, Fujie K. Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Methods 2001; 47: 17– 24 [PubMed] [CrossRef]
    [Google Scholar]
  42. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded Ion exchanger as stationary phases. J Liq Chromatogr 1982; 5: 2359– 2367 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001990
Loading
/content/journal/ijsem/10.1099/ijsem.0.001990
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error