1887

Abstract

A moderately halophilic bacterium designated strain M6-53 was isolated from water of a pond from a marine saltern located in Huelva, south-west Spain. Cells of the strain were Gram-stain-negative, strictly aerobic, motile, slightly curved rods, able to grow in media containing 5–25 % (w/v) NaCl (optimal growth at 10 %, w/v), at temperatures from 20 to 40 °C (optimally at 37 °C) and at pH 6.5–9 (optimally at pH 7.0). Phylogenetic analysis based on 16S rRNA gene sequences placed the new isolate within the genus Marinobacter , with the type strains of the most closely related species being Marinobacter persicus IBRC-M 10445 (98.5 % similarity), Marinobacter oulmenensis Set74 (97.2 %) and Marinobacter hydrocarbonoclasticus ATCC 49840 (97.1 %). The major fatty acids present in strain M6-53 were C18 : 1ω9c (29.5 %), C16 : 0 (26.7 %), C12 : 0 3-OH (15.1 %), C18 : 0 (10.2 %) and C16 : ω9c (9.6 %). The G+C content of the genomic DNA for this strain was determined to be 56.4 mol%. The DNA–DNA hybridization values between strain M6-53 and M. persicus CECT 7991, M. oulmenensis CECT 7499 and M. hydrocarbonoclasticus DSM 50418 were 8, 41 and 38 %, respectively. These values are lower than the accepted 70 % threshold and showed that the new isolate represented a different species within the genus Marinobacter . Phylogenetic analysis based on the 16S rRNA gene sequence and the phenotypic, genotypic and chemotaxonomic features of this new isolate support the placement of strain M6-53 as a representative of a novel species of the genus Marinobacter , for which we propose the name Marinobacter aquaticus sp. nov., with strain M6-53 (=CECT 9228=LMG 30006) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001984
2017-08-10
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2622.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001984&mimeType=html&fmt=ahah

References

  1. Ventosa A, Fernández AB, León MJ, Sánchez-Porro C, Rodriguez-Valera F. The Santa Pola saltern as a model for studying the microbiota of hypersaline environments. Extremophiles 2014;18:811–824 [CrossRef][PubMed]
    [Google Scholar]
  2. Oren A. Halophilic microbial communities and their environments. Curr Opin Biotechnol 2015;33:119–124 [CrossRef][PubMed]
    [Google Scholar]
  3. Ventosa A, de La Haba RR, Sánchez-Porro C, Papke RT. Microbial diversity of hypersaline environments: a metagenomic approach. Curr Opin Microbiol 2015;25:80–87 [CrossRef][PubMed]
    [Google Scholar]
  4. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M et al. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 1992;42:568–576 [CrossRef][PubMed]
    [Google Scholar]
  5. Parte AC. LPSNlist of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  6. Cui Z, Gao W, Xu G, Luan X, Li Q et al. Marinobacter aromaticivorans sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from sea sediment. Int J Syst Evol Microbiol 2016;66:353–359 [CrossRef][PubMed]
    [Google Scholar]
  7. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 1982;128:1959–1968 [CrossRef]
    [Google Scholar]
  8. León MJ, Vera-Gargallo B, Sánchez-Porro C, Ventosa A. Spiribacter roseus sp. nov., a moderately halophilic species of the genus Spiribacter from salterns. Int J Syst Evol Microbiol 2016;66:4218–4224 [CrossRef][PubMed]
    [Google Scholar]
  9. León MJ, Martínez-Checa F, Ventosa A, Sánchez-Porro C. Idiomarina aquatica sp. nov., a moderately halophilic bacterium isolated from salterns. Int J Syst Evol Microbiol 2015;65:4595–4600 [CrossRef][PubMed]
    [Google Scholar]
  10. Sánchez-Porro C, de la Haba RR, Soto-Ramírez N, Márquez MC, Montalvo-Rodríguez R et al. Description of Kushneria aurantia gen. nov., sp. nov., a novel member of the family Halomonadaceae, and a proposal for reclassification of Halomonas marisflavi as Kushneria marisflavi comb. nov., of Halomonas indalinina as Kushneria indalinina comb. nov. and of Halomonas avicenniae as Kushneria avicenniae comb. nov. Int J Syst Evol Microbiol 2009;59:397–405 [CrossRef][PubMed]
    [Google Scholar]
  11. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956;178:703 [CrossRef][PubMed]
    [Google Scholar]
  12. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  13. Koser SA. Utilization of the salts of organic acids by the colon-aerogenes group. J Bacteriol 1923;8:493–520[PubMed]
    [Google Scholar]
  14. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208–218 [CrossRef]
    [Google Scholar]
  15. Márquez MC, Carrasco IJ, Xue Y, Ma Y, Cowan DA et al. Aquisalibacillus elongatus gen. nov., sp. nov., a moderately halophilic bacterium of the family Bacillaceae isolated from a saline lake. Int J Syst Evol Microbiol 2008;58:1922–1926 [CrossRef][PubMed]
    [Google Scholar]
  16. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2016; in press [CrossRef][PubMed]
    [Google Scholar]
  17. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  19. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971;20:406–416 [CrossRef]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  22. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962;5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  23. Owen RJ, Hill LR. The estimation of base compositions, base pairing and genome size of bacterial deoxyribonucleic acids. In Skinner FA, Lovelock DW. (editors) Identification Methods for Microbiologists, 2nd ed. London: Academic Press; 1979; pp.217–296
    [Google Scholar]
  24. Bagheri M, Amoozegar M, Didarı M, Makhdoumi-Kakhki A, Schumann P et al. Marinobacter persicus sp. nov., a moderately halophilic bacterium from a saline lake in Iran. Antonie van Leeuwenhoek 2013;104:47–54[CrossRef]
    [Google Scholar]
  25. Kharroub K, Aguilera M, Jiménez-Pranteda ML, González-Paredes A, Ramos-Cormenzana A et al. Marinobacter oulmenensis sp. nov., a moderately halophilic bacterium isolated from brine of a salt concentrator. Int J Syst Evol Microbiol 2011;61:2210–2214 [CrossRef][PubMed]
    [Google Scholar]
  26. Johnson JL. Similarity analysis of DNAs. In Gerhardh P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.655–681
    [Google Scholar]
  27. De Ley J, Tijtgat R. Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie van Leeuwenhoek 1970;36:461–474 [CrossRef][PubMed]
    [Google Scholar]
  28. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  29. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P et al. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 2002;52:1043–1047 [CrossRef][PubMed]
    [Google Scholar]
  30. MIDI Sherlock Microbial Identification System Operating Manual, Version 6.1 Newark, DE: MIDI Inc; 2008
    [Google Scholar]
  31. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101 Newark: DE: MIDI Inc; 1990
    [Google Scholar]
  32. Márquez MC, Ventosa A. Marinobacter hydrocarbonoclasticus Gauthier et al. 1992 and Marinobacter aquaeolei Nguyen et al. 1999 are heterotypic synonyms. Int J Syst Evol Microbiol 2005;55:1349–1351 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001984
Loading
/content/journal/ijsem/10.1099/ijsem.0.001984
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error