1887

Abstract

Brine samples from Kulunda Steppe soda lakes (Altai, Russia) were inoculated into a hypersaline alkaline mineral medium with β-keratin (chicken feather) as a substrate. The micro-organisms dominating the enrichment culture were isolated by limiting serial dilution on the same medium with casein as a substrate. The cells of strain BSker1 were motile, curved rods. The strain was an obligately aerobic heterotroph utilizing proteins and peptides as growth substrates. The isolate was an obligate alkaliphile with a pH range for growth from pH 8.5 to 10.25 (optimum at pH 9.5), and it was extremely salt tolerant, growing with between 1 and 4.5 M total Na (optimally at 2–2.5 M). BSker1 had a unique composition of polar lipid fatty acids, dominated by two C species. The membrane polar lipids included multiple unidentified phospholipids and two aminolipids. According to phylogenetic analysis of the 16S rRNA gene sequence, the isolate forms a novel branch within the family (class ) with the highest sequence similarity to the members of this family being 91 %. On the basis of distinct phenotypic and genotypic properties, strain BSker1 (=JCM 31341=UNIQEM U1008) is proposed to be classified as a representative of a novel genus and species, gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001983
2017-08-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2604.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001983&mimeType=html&fmt=ahah

References

  1. Oduor SO, Schagerl M. Phytoplankton primary productivity characteristics in response to photosynthetically active radiation in three Kenyan Rift valley saline alkaline lakes. J Plankton Res 2007;29:1041–1050 [CrossRef]
    [Google Scholar]
  2. Krienitz L, Schagerl M. Tiny and tough. Microphytes in East African soda lakes. In Schagerl M. (editor) Soda Lakes of East Africa Switzerland: Springer International Publishing; 2016; pp.149–177
    [Google Scholar]
  3. Samylina OS, Sapozhnikov FV, Gainova OY, Ryabova AV, Nikitin MA et al. Algo-bacterial phototrophic communities of soda lakes in Kulunda Steppe (Altai, Russia). Microbiology 2014;83:849–860[CrossRef]
    [Google Scholar]
  4. Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD et al. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 2014;18:791–809 [CrossRef][PubMed]
    [Google Scholar]
  5. Sorokin DY, Banciu HL, Muyzer G. Functional microbiology of soda lakes. Curr Opin Microbiol 2015;25:88–96 [CrossRef][PubMed]
    [Google Scholar]
  6. Grant BD, Jones BE. Bacteria, archaea and viruses of soda lakes. In Schagerl M. (editor) Soda Lakes of East Africa Switzerland: Springer International Publishing; 2016; pp.97–147
    [Google Scholar]
  7. Horikoshi K. Alkaliphiles: Genetic Properties and Applications of Enzymes Tokyo: Kodansha; 2006
    [Google Scholar]
  8. Fujinami S, Fujisawa M. Industrial applications of alkaliphiles and their enzymespast, present and future. Environ Technol 2010;31:845–856 [CrossRef][PubMed]
    [Google Scholar]
  9. Sarethy IP, Saxena Y, Kapoor A, Sharma M, Sharma SK et al. Alkaliphilic bacteria: applications in industrial biotechnology. J Ind Microbiol Biotechnol 2011;38:769–790 [CrossRef][PubMed]
    [Google Scholar]
  10. Kevbrin V, Boltyanskaya Y, Zhilina T, Kolganova T, Lavrentjeva E et al. Proteinivorax tanatarense gen. nov., sp. nov., an anaerobic, haloalkaliphilic, proteolytic bacterium isolated from a decaying algal bloom, and proposal of Proteinivoraceae fam. nov. Extremophiles 2013;17:747–756 [CrossRef][PubMed]
    [Google Scholar]
  11. Abdel-Hamed AR, Abo-Elmatty DM, Wiegel J, Mesbah NM. Biochemical characterization of a halophilic, alkalithermophilic protease from Alkalibacillus sp. NM-Da2. Extremophiles 2016;20:885–894 [CrossRef][PubMed]
    [Google Scholar]
  12. De Castro RE, Ruiz DM, Giménez MI, Silveyra MX, Paggi RA et al. Gene cloning and heterologous synthesis of a haloalkaliphilic extracellular protease of Natrialba magadii (Nep). Extremophiles 2008;12:677–687 [CrossRef][PubMed]
    [Google Scholar]
  13. Gessesse A, Hatti-Kaul R, Gashe BA, Mattiasson B. Novel alkaline proteases from alkaliphilic bacteria grown on chicken feather. Enzyme Microb Technol 2003;32:519–524 [CrossRef]
    [Google Scholar]
  14. Lama L, Romano I, Calandrelli V, Nicolaus B, Gambacorta A. Purification and characterization of a protease produced by an aerobic haloalkaliphilic species belonging to the Salinivibrio genus. Res Microbiol 2005;156:478–484 [CrossRef][PubMed]
    [Google Scholar]
  15. Selim S, Hagagy N, Abdel Aziz M, El-Meleigy Els, Pessione E. Thermostable alkaline halophilic-protease production by Natronolimnobius innermongolicus WN18. Nat Prod Res 2014;28:1476–1479 [CrossRef][PubMed]
    [Google Scholar]
  16. Pfennig N, Lippert KD. Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 1966;55:245–256 [CrossRef]
    [Google Scholar]
  17. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  18. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  19. Labrenz M, Lawson PA, Tindall BJ, Collins MD, Hirsch P. Roseisalinus antarcticus gen. nov., sp. nov., a novel aerobic bacteriochlorophyll a-producing α-proteobacterium isolated from hypersaline Ekho Lake, Antarctica. Int J Syst Evol Microbiol 2005;55:41–47 [CrossRef][PubMed]
    [Google Scholar]
  20. Strömpl C, Tindall BJ, Jarvis GN, Lünsdorf H, Moore ER et al. A re-evaluation of the taxonomy of the genus Anaerovibrio, with the reclassification of Anaerovibrio glycerini as Anaerosinus glycerini gen. nov., comb. nov., and Anaerovibrio burkinabensis as Anaeroarcus burkinensis [corrig.] gen. nov., comb. nov. Int J Syst Bacteriol 1999;49:1861–1872 [CrossRef][PubMed]
    [Google Scholar]
  21. Collins MD. Analysis of isoprenoid quinones. Methods Microbiol 1985;18:329–363[CrossRef]
    [Google Scholar]
  22. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  23. Oren A. The family Ectothiorhodospiraceae. In Rosenberg E. (editor) The Prokaryotes – Gammaproteobacteria Berlin Heidelberg: Springer-Verlag; 2014; pp.200–223
    [Google Scholar]
  24. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  25. Rijkenberg MJ, Kort R, Hellingwerf KJ, Gen A. Alkalispirillum mobile gen. nov., spec. nov., an alkaliphilic non-phototrophic member of the Ectothiorhodospiraceae. Arch Microbiol 2001;175:369–375 [CrossRef][PubMed]
    [Google Scholar]
  26. León MJ, Fernández AB, Ghai R, Sánchez-Porro C, Rodriguez-Valera F et al. From metagenomics to pure culture: isolation and characterization of the moderately halophilic bacterium Spiribacter salinus gen. nov., sp. nov. Appl Environ Microbiol 2014;80:3850–3857 [CrossRef][PubMed]
    [Google Scholar]
  27. Zhang YJ, Jia M, Ma YC, Lu KY, Tian F et al. Aquisalimonas halophila sp. nov., a moderately halophilic bacterium isolated from a hypersaline mine. Int J Syst Evol Microbiol 2014;64:2210–2216 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001983
Loading
/content/journal/ijsem/10.1099/ijsem.0.001983
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error