1887

Abstract

Strain 011410, isolated from air at the foot of Xiangshan Mountain, Beijing, China, was Gram-reaction-negative, facultatively anaerobic, oval-shaped, motile with two flagella and catalase- and oxidase-positive. Growth of strain 011410 was observed at 4–41 °C (optimum, 30 °C), at pH 4.5–10.0 (optimum, pH 8.0) and at salinities of 0–10 % (w/v) NaCl (optimum, 0–2 %). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 011410 was a member of the genus and was related most closely to B7 (96.62 % similarity) and CMB17 (96.48 % similarity). The major fatty acid was identified as Cω7, with smaller amounts of C, C 3-OH and summed feature 2 (C 3-OH and/or iso-C I). The predominant respiratory quinone was ubiquinone-10 (Q-10), with Q-9 as a minor component. Polar lipid analysis indicated the presence of diphosphatidylglycerol, phosphatidylglycerol, one unknown phosphoglycolipid, five unknown phospholipids, one unknown aminolipid, one unknown glycolipid and two unknown polar lipids. The DNA G+C content of the strain was 63.5 mol%. On the basis of the data from this polyphasic characterization, strain 011410 represents a novel species, for which the name sp. nov. is proposed. The type strain is 011410 (=CFCC 14285=KCTC 42845).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001976
2017-08-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2586.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001976&mimeType=html&fmt=ahah

References

  1. Davis DH, Doudoroff M, Stanier RY, Mandel M. Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int J Syst Bacteriol 1969;19:375–390 [CrossRef]
    [Google Scholar]
  2. Ludwig W, Mittenhuber G, Friedrich CG. Transfer of Thiosphaera pantotropha to Paracoccus denitrificans. Int J Syst Bacteriol 1993;43:363–367 [CrossRef][PubMed]
    [Google Scholar]
  3. Katayama Y, Hiraishi A, Kuraishi H. Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus. Microbiology 1995;141:1469–1477 [CrossRef][PubMed]
    [Google Scholar]
  4. Lipski A, Reichert K, Reuter B, Spröer C, Altendorf K. Identification of bacterial isolates from biofilters as Paracoccus alkenifer sp. nov. and Paracoccus solventivorans with emended description of Paracoccus solventivorans. Int J Syst Bacteriol 1998;48:529–536 [CrossRef][PubMed]
    [Google Scholar]
  5. Liu ZP, Wang BJ, Liu XY, Dai X, Liu YH et al. Paracoccus halophilus sp. nov., isolated from marine sediment of the South China Sea, China, and emended description of genus Paracoccus Davis 1969. Int J Syst Evol Microbiol 2008;58:257–261 [CrossRef][PubMed]
    [Google Scholar]
  6. Parte AC. LPSNlist of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  7. Doetsch RN. et al. Determinative methods of light microscopy. In Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981; pp.21–33
    [Google Scholar]
  8. Chung YC, Kobayashi T, Kanai H, Akiba T, Kudo T. Purification and Properties of extracellular amylase from the hyperthermophilic archaeon Thermococcus profundus DT5432. Appl Environ Microbiol 1995;61:1502–1506[PubMed]
    [Google Scholar]
  9. Sheu SY, Jiang SR, Chen CA, Wang JT, Chen WM. Paracoccus stylophorae sp. nov., isolated from the reef-building coral Stylophora pistillata. Int J Syst Evol Microbiol 2011;61:2221–2226 [CrossRef][PubMed]
    [Google Scholar]
  10. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  11. Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  12. MacFaddin JF. Biochemical Tests for the Identification of Medical Bacteria, 3rd ed. Baltimore, MD: Williams & Wilkins; 2000
    [Google Scholar]
  13. Nokhal T-H, Schlegel HG. Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol 1983;33:26–37 [CrossRef]
    [Google Scholar]
  14. Shieh WY, Chen YW, Chaw SM, Chiu HH. Vibrio ruber sp. nov., a red, facultatively anaerobic, marine bacterium isolated from sea water. Int J Syst Evol Microbiol 2003;53:479–484 [CrossRef][PubMed]
    [Google Scholar]
  15. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York: Wiley; 1991; pp.115–175
    [Google Scholar]
  16. Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 2003;55:541–555 [CrossRef][PubMed]
    [Google Scholar]
  17. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977;74:5463–5467 [CrossRef]
    [Google Scholar]
  18. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  21. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993;10:1073–1095[PubMed]
    [Google Scholar]
  22. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  23. Tindall BJ. Fully saturated menaqionones in the archaebacterium Pyrobaculum islandicum. FEMS Microbiol Lett 1989;60:251–254 [CrossRef]
    [Google Scholar]
  24. Collins MD. Analysis of isoprenoid quinones. Methods Microbiol 1985;18:329–366[CrossRef]
    [Google Scholar]
  25. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  26. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  27. Kates M. Techniques of Lipidology: Isolation, Analysis, and Identification of Lipids Amsterdam: Elsevier; 1986
    [Google Scholar]
  28. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:1–207
    [Google Scholar]
  29. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  30. Kim BY, Weon HY, Yoo SH, Kwon SW, Cho YH et al. Paracoccus homiensis sp. nov., isolated from a sea-sand sample. Int J Syst Evol Microbiol 2006;56:2387–2390 [CrossRef][PubMed]
    [Google Scholar]
  31. Roh SW, Nam YD, Chang HW, Kim KH, Kim MS et al. Paracoccus aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2009;59:790–794 [CrossRef][PubMed]
    [Google Scholar]
  32. Pan J, Sun C, Zhang XQ, Huo YY, Zhu XF et al. Paracoccus sediminis sp. nov., isolated from Pacific Ocean marine sediment. Int J Syst Evol Microbiol 2014;64:2512–2516 [CrossRef][PubMed]
    [Google Scholar]
  33. La HJ, Im WT, Ten LN, Kang MS, Shin DY et al. Paracoccus koreensis sp. nov., isolated from anaerobic granules in an upflow anaerobic sludge blanket (UASB) reactor. Int J Syst Evol Microbiol 2005;55:1657–1660 [CrossRef][PubMed]
    [Google Scholar]
  34. Doronina NV, Trotsenko YA, Krausova VI, Suzina NE. Paracoccus methylutens sp. nov. — a new aerobic facultatively methylotrophic bacterium utilizing dichloromethane. Syst Appl Microbiol 1998;21:230–236[CrossRef]
    [Google Scholar]
  35. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987;19:1–67
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001976
Loading
/content/journal/ijsem/10.1099/ijsem.0.001976
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error