1887

Abstract

A Gram-stain-positive, rod-shaped, motile bacterium designated as SYP-B691 was isolated from rhizospheric soil of Panax notoginseng. Phylogenetic analysis indicated that SYP-B691 clearly represented a member of the genus Bacillus and showed 16S rRNA gene similarity lower than 97.0 % with the type strains of species of the genus Bacillus , which indicates that it should be considered as a candidate novel species within this genus. The optimum growth of the strain was found to occur at 37 °C and pH 7.0–9.0. The genomic DNA G+C content was determined to be 45.2 mol%. It contained meso-2,6-diaminopimelic acid in the cell-wall peptidoglycan. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unknown phospholipid. MK-7 was the only menaquinone identified. The major cellular fatty acids of SYP-B691 were identified as iso-C15 : 0 and anteiso-C15 : 0. On the basis of phenotypic, chemotaxonomic and phylogenetic characteristics, SYP-B691 merits recognition as a representative of a novel species of the genus Bacillus , for which the name Bacillus notoginsengisoli sp. nov. is proposed, with SYP-B691(=DSM 29196=JCM 30743) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001975
2017-08-08
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2581.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001975&mimeType=html&fmt=ahah

References

  1. Cohn F. Untersuchungen über bakterien. Beitr Biol Pflanz Heft 1872;1:127–224
    [Google Scholar]
  2. Ash C, Farrow JA, Dorsch M, Stackebrandt E, Collins MD. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int J Syst Bacteriol 1991;41:343–346 [CrossRef][PubMed]
    [Google Scholar]
  3. Chen JH, Tian XR, Ruan Y, Yang LL, He ZQ et al. Bacillus crassostreae sp. nov., isolated from an oyster (Crassostrea hongkongensis). Int J Syst Evol Microbiol 2015;65:1561–1566 [CrossRef][PubMed]
    [Google Scholar]
  4. Liu B, Liu GH, Cetin S, Schumann P, Pan ZZ et al. Bacillus gobiensis sp. nov., isolated from a soil sample. Int J Syst Evol Microbiol 2016;66:379–384 [CrossRef][PubMed]
    [Google Scholar]
  5. Lin SY, Hameed A, Liu YC, Wen CZ, Lai WA et al. Bacillus lycopersici sp. nov., isolated from a tomato plant (Solanum lycopersicum L.). Int J Syst Evol Microbiol 2015;65:2085–2090 [CrossRef][PubMed]
    [Google Scholar]
  6. Azmatunnisa M, Rahul K, Subhash Y, Sasikala Ch, Ramana ChV. Bacillus oleivorans sp. nov., a diesel oil-degrading and solvent-tolerant bacterium. Int J Syst Evol Microbiol 2015;65:1310–1315 [CrossRef][PubMed]
    [Google Scholar]
  7. Hong SW, Kwon SW, Kim SJ, Kim SY, Kim JJ et al. Bacillus oryzaecorticis sp. nov., a moderately halophilic bacterium isolated from rice husks. Int J Syst Evol Microbiol 2014;64:2786–2791 [CrossRef][PubMed]
    [Google Scholar]
  8. Dunlap CA, Kwon SW, Rooney AP, Kim SJ. Bacillus paralicheniformis sp. nov., isolated from fermented soybean paste. Int J Syst Evol Microbiol 2015;65:3487–3492 [CrossRef][PubMed]
    [Google Scholar]
  9. Nguyen TM, Kim J. Bacillus polymachus sp. nov., with a broad range of antibacterial activity, isolated from forest topsoil samples by using a modified culture method. Int J Syst Evol Microbiol 2015;65:704–709 [CrossRef][PubMed]
    [Google Scholar]
  10. Sylvan JB, Hoffman CL, Momper LM, Toner BM, Amend JP et al. Bacillus rigiliprofundi sp. nov., an endospore-forming, Mn-oxidizing, moderately halophilic bacterium isolated from deep subseafloor basaltic crust. Int J Syst Evol Microbiol 2015;65:1992–1998 [CrossRef][PubMed]
    [Google Scholar]
  11. Lei Z, Qiu P, Ye R, Tian J, Liu Y et al. Bacillus shacheensis sp. nov., a moderately halophilic bacterium isolated from a saline-alkali soil. J Gen Appl Microbiol 2014;60:101–105 [CrossRef][PubMed]
    [Google Scholar]
  12. Müller N, Scherag FD, Pester M, Schink B. Bacillus stamsii sp. nov., a facultatively anaerobic sugar degrader that is numerically dominant in freshwater lake sediment. Syst Appl Microbiol 2015;38:379–389 [CrossRef][PubMed]
    [Google Scholar]
  13. Jiang Z, Zhang DF, Khieu TN, Son CK, Zhang XM et al. Bacillus tianshenii sp. nov., isolated from a marine sediment sample. Int J Syst Evol Microbiol 2014;64:1998–2002 [CrossRef][PubMed]
    [Google Scholar]
  14. Logan NA, Berge O, Bishop AH, Busse HJ, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009;59:2114–2121 [CrossRef][PubMed]
    [Google Scholar]
  15. Zhang MY, Xu H, Zhang TY, Xie J, Cheng J et al. Flavobacterium notoginsengisoli sp. nov., isolated from the rhizosphere of Panax notoginseng. Antonie van Leeuwenhoek 2015;108:545–552 [CrossRef][PubMed]
    [Google Scholar]
  16. Cheng J, Zhang MY, Wang WX, Manikprabhu D, Salam N et al. Luteimonas notoginsengisoli sp. nov., isolated from rhizosphere soil. Int J Syst Evol Microbiol 2015;66:946–950 [CrossRef][PubMed]
    [Google Scholar]
  17. Zhang MY, Xie J, Zhang TY, Xu H, Cheng J et al. Sinomonas notoginsengisoli sp. nov., isolated from the rhizosphere of Panax notoginseng. Antonie van Leeuwenhoek 2014;106:827–835 [CrossRef][PubMed]
    [Google Scholar]
  18. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  19. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  20. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956;178:703–704 [CrossRef][PubMed]
    [Google Scholar]
  21. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978;24:710–715 [CrossRef]
    [Google Scholar]
  22. Cui XL, Mao PH, Zeng M, Li WJ, Zhang LP et al. Streptimonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 2001;51:357–363 [CrossRef][PubMed]
    [Google Scholar]
  23. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007;57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  24. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2016; in press [CrossRef][PubMed]
    [Google Scholar]
  25. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  26. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  29. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  30. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  31. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  32. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  33. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  34. Kanso S, Greene AC, Patel BK. Bacillus subterraneus sp. nov., an iron- and manganese-reducing bacterium from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 2002;52:869–874 [CrossRef][PubMed]
    [Google Scholar]
  35. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983;29:319–322 [CrossRef]
    [Google Scholar]
  36. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970;20:435–443 [CrossRef]
    [Google Scholar]
  37. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979;47:87–95 [CrossRef]
    [Google Scholar]
  38. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980;48:459–470 [CrossRef]
    [Google Scholar]
  39. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  40. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982;5:2359–2367 [CrossRef]
    [Google Scholar]
  41. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc. 1990
  42. Pérez-Ibarra BM, Flores ME, García-Varela M. Isolation and characterization of Bacillus thioparus sp. nov., chemolithoautotrophic, thiosulfate-oxidizing bacterium. FEMS Microbiol Lett 2007;271:289–296 [CrossRef][PubMed]
    [Google Scholar]
  43. Tiago I, Pires C, Mendes V, Morais PV, Da Costa MS et al. Bacillus foraminis sp. nov., isolated from a non-saline alkaline groundwater. Int J Syst Evol Microbiol 2006;56:2571–2574 [CrossRef][PubMed]
    [Google Scholar]
  44. Ahmed I, Yokota A, Fujiwara T. A novel highly boron tolerant bacterium, Bacillus boroniphilus sp. nov., isolated from soil, that requires boron for its growth. Extremophiles 2007;11:217–224 [CrossRef][PubMed]
    [Google Scholar]
  45. Yoon JH, Kang SS, Lee KC, Kho YH, Choi SH et al. Bacillus jeotgali sp. nov., isolated from jeotgal, Korean traditional fermented seafood. Int J Syst Evol Microbiol 2001;51:1087–1092 [CrossRef][PubMed]
    [Google Scholar]
  46. Yamamura S, Yamashita M, Fujimoto N, Kuroda M, Kashiwa M et al. Bacillus selenatarsenatis sp. nov., a selenate- and arsenate-reducing bacterium isolated from the effluent drain of a glass-manufacturing plant. Int J Syst Evol Microbiol 2007;57:1060–1064 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001975
Loading
/content/journal/ijsem/10.1099/ijsem.0.001975
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error