sp. nov., isolated from a spring Free

Abstract

A bacterial strain designated STM-14 was isolated from a spring in Taiwan and characterized using a polyphasic taxonomic approach. Strain STM-14 was a Gram-stain-negative, aerobic, poly-β-hydroxybutyrate-accumulating, non-motile, rod-shaped bacterium and formed cream-coloured colonies. Strain STM-14 grew at 15–37 °C (optimum, 30 °C), at pH 5.0–9.0 (optimum, pH 6.0) and with 0–0.5 % (w/v) NaCl (optimum, 0 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain STM-14 belonged to the genus and showed the highest levels of sequence similarity to D39 (98.5 %) and SM117 (97.6 %). The major fatty acids (>10 %) of strain STM-14 were Cω6, summed feature 3 (Cω7 and/or Cω6), Cω7, C 2-OH and Cω8. The polar lipid profile consisted of phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidyldimethylethanolamine, sphingoglycolipid, phosphatidylcholine and several uncharacterized lipids. The major polyamine was spermidine. The major isoprenoid quinone was Q-10. The DNA G+C content was 66.6 mol%. The DNA–DNA hybridization value for strain STM-14 with JCM 31158 and DSM 23374 was less than 49 %. Differential phenotypic properties, together with the phylogenetic inference, demonstrate that strain STM-14 should be classified as representing a novel species of the genus , for which the name sp. nov. is proposed. The type strain is STM-14 (=BCRC 80924=LMG 29290=KCTC 42983).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001973
2017-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2423.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001973&mimeType=html&fmt=ahah

References

  1. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:1405–1417 [View Article][PubMed]
    [Google Scholar]
  2. Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA et al. Novosphingobium arabidopsis sp. nov., a DDT-resistant bacterium isolated from the rhizosphere of Arabidopsis thaliana . Int J Syst Evol Microbiol 2014; 64:594–598 [View Article][PubMed]
    [Google Scholar]
  3. Kämpfer P, Martin K, McInroy JA, Glaeser SP. Novosphingobium gossypii sp. nov., isolated from Gossypium hirsutum . Int J Syst Evol Microbiol 2015; 65:2831–2837 [View Article][PubMed]
    [Google Scholar]
  4. Chen WM, Laevens S, Lee TM, Coenye T, de Vos P et al. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 2001; 51:1729–1735 [View Article][PubMed]
    [Google Scholar]
  5. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  6. Anzai Y, Kudo Y, Oyaizu H. The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 1997; 47:249–251 [View Article][PubMed]
    [Google Scholar]
  7. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  8. Cole JR, Wang Q, Cardenas E, Fish J, Chai B et al. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009; 37:D141–D145 [View Article][PubMed]
    [Google Scholar]
  9. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  10. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  11. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  12. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983 [CrossRef]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  14. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  15. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32 [View Article]
    [Google Scholar]
  16. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10:1073–1095[PubMed]
    [Google Scholar]
  17. Felsenstein J. PHYLIP (Phylogeny Inference Package), Version 3.5c Distributed by the author Seattle, USA: Department of Genome Sciences, University of Washington; 1993
    [Google Scholar]
  18. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995; 61:3756–3758[PubMed]
    [Google Scholar]
  19. Beveridge TJ, Lawrence JR, Murray RGE. Sampling and staining for light microscopy. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp. 19–33
    [Google Scholar]
  20. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp. 309–329
    [Google Scholar]
  21. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp. 330–393
    [Google Scholar]
  22. Wen CM, Tseng CS, Cheng CY, Li YK. Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 2002; 35:213–219 [View Article][PubMed]
    [Google Scholar]
  23. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article][PubMed]
    [Google Scholar]
  24. Chang SC, Wang JT, Vandamme P, Hwang JH, Chang PS et al. Chitinimonas taiwanensis gen. nov., sp. nov., a novel chitinolytic bacterium isolated from a freshwater pond for shrimp culture. Syst Appl Microbiol 2004; 27:43–49 [View Article][PubMed]
    [Google Scholar]
  25. Nokhal TH, Schlegel HG. Taxonomic study of Paracoccus denitrificans . Int J Syst Bacteriol 1983; 33:26–37 [View Article]
    [Google Scholar]
  26. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  27. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  28. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  29. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994 pp. 265–309
    [Google Scholar]
  30. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  31. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994 pp. 121–161
    [Google Scholar]
  32. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  33. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997; 47:698–708 [View Article]
    [Google Scholar]
  34. Kämpfer P, Rosselló-Mora R, Hermansson M, Persson F, Huber B et al. Undibacterium pigrum gen. nov., sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 2007; 57:1510–1515 [View Article][PubMed]
    [Google Scholar]
  35. Chaudhary DK, Kim J. Novosphingobium naphthae sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol 2016; 66:3170–3176 [View Article][PubMed]
    [Google Scholar]
  36. Lee JC, Kim SG, Whang KS. Novosphingobium aquiterrae sp. nov., isolated from ground water. Int J Syst Evol Microbiol 2014; 64:3282–3287 [View Article][PubMed]
    [Google Scholar]
  37. Xie F, Quan S, Liu D, He W, Wang Y et al. Novosphingobium kunmingense sp. nov., isolated from a phosphate mine. Int J Syst Evol Microbiol 2014; 64:2324–2329 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001973
Loading
/content/journal/ijsem/10.1099/ijsem.0.001973
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed