1887

Abstract

A pale-red-pigmented bacterial strain, designated CW1, was isolated from a polluted soil sample in China and was characterized by a polyphasic taxonomic approach. Strain CW1 was Gram-stain-positive (or variable), coccoid, motile by a single polar flagellum and non-spore-forming. Growth was observed at 15–37 °C, but not at 10 °C or 40 °C, at pH 5.0–9.0 and with 0–5 % NaCl (w/v). Phylogenetic analysis showed that strain CW1 belongs to the genus . The 16S rRNA gene sequence similarities between CW1 and the four most closely related type strains, DSM 14505, DSM 24743, XN13 and NBRC 12536 were 97.96, 97.83, 97.83 and 97.82 %, respectively. The whole-cell sugars contained galactose, ribose and glucose. The major respiratory quinone was MK-7 followed by MK-8, and the major fatty acids were anteiso-C and anteiso-C. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphoglycolipid. The DNA G+C content was 48.6 mol%. The phylogenetic and chemotaxonomic analyses indicated that strain CW1 belongs unanimously to the genus . However, DNA–DNA hybridization showed relatively low relatedness of 21.8 % (DSM 14505) and 19.6 % (DSM 24743) with the two most closely related strains of the genus . Combined with the genotypic and phenotypic analysis, strain CW1 should represent a novel species in the genus , for which the name sp. nov. is proposed. The type strain is CW1 (=CCTCC AB 207187=LMG 24442).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001960
2017-08-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2549.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001960&mimeType=html&fmt=ahah

References

  1. Migula W. Über ein neues System der Bakterien. Arb BakteriolnInst Karlsruhe 1894;1:235–238
    [Google Scholar]
  2. Nakagawa Y, Sakane T, Yokota A. Emendation of the genus Planococcus and transfer of Flavobacterium okeanokoites Zobell and Upham 1944 to the genus Planococcus as Planococcus okeanokoites comb. nov. Int J Syst Bacteriol 1996;46:866–870 [CrossRef][PubMed]
    [Google Scholar]
  3. Yoon JH, Kang SJ, Lee SY, Oh KH, Oh TK. Planococcus salinarum sp. nov., isolated from a marine solar saltern, and emended description of the genus Planococcus. Int J Syst Evol Microbiol 2010;60:754–758 [CrossRef][PubMed]
    [Google Scholar]
  4. Kocur M, Zdena P, Hodgkiss W, Martinec T. The taxonomic status of the genus Planococcus Migula 1894. Int J Syst Bacteriol 1970;20:241–248 [CrossRef]
    [Google Scholar]
  5. Hao MV, Komagata K. A new species of Planococcus, P. kocurii isolated from fish, frozen foods, and fish curing brine. J Gen Appl Microbiol 1985;31:441–455 [CrossRef]
    [Google Scholar]
  6. Reddy GS, Prakash JS, Vairamani M, Prabhakar S, Matsumoto GI et al. Planococcus antarcticus and Planococcus psychrophilus spp. nov. isolated from cyanobacterial mat samples collected from ponds in Antarctica. Extremophiles 2002;6:253–261 [CrossRef][PubMed]
    [Google Scholar]
  7. Romano I, Giordano A, Lama L, Nicolaus B, Gambacorta A. Planococcus rifietensis sp. nov, isolated from algal mat collected from a sulfurous spring in Campania (Italy). Syst Appl Microbiol 2003;26:357–366 [CrossRef][PubMed]
    [Google Scholar]
  8. Yoon JH, Weiss N, Kang KH, Oh TK, Park YH. Planococcus maritimus sp. nov., isolated from sea water of a tidal flat in Korea. Int J Syst Evol Microbiol 2003;53:2013–2017 [CrossRef][PubMed]
    [Google Scholar]
  9. Alam SI, Singh L, Dube S, Reddy GS, Shivaji S. Psychrophilic Planococcus maitriensis sp. nov. from Antarctica. Syst Appl Microbiol 2003;26:505–510 [CrossRef][PubMed]
    [Google Scholar]
  10. Suresh K, Mayilraj S, Bhattacharya A, Chakrabarti T. Planococcus columbae sp. nov., isolated from pigeon faeces. Int J Syst Evol Microbiol 2007;57:1266–1271 [CrossRef][PubMed]
    [Google Scholar]
  11. Choi JH, Im WT, Liu QM, Yoo JS, Shin JH et al. Planococcus donghaensis sp. nov., a starch-degrading bacterium isolated from the East Sea, South Korea. Int J Syst Evol Microbiol 2007;57:2645–2650 [CrossRef][PubMed]
    [Google Scholar]
  12. Mykytczuk NC, Wilhelm RC, Whyte LG. Planococcus halocryophilus sp. nov., an extreme sub-zero species from high Arctic permafrost. Int J Syst Evol Microbiol 2012;62:1937–1944 [CrossRef][PubMed]
    [Google Scholar]
  13. Kaur I, Das AP, Acharya M, Klenk HP, Sree A et al. Planococcus plakortidis sp. nov., isolated from the marine sponge Plakortis simplex (Schulze). Int J Syst Evol Microbiol 2012;62:883–889 [CrossRef][PubMed]
    [Google Scholar]
  14. Wang K, Zhang L, Li J, Pan Y, Meng L et al. Planococcus dechangensis sp. nov., a moderately halophilic bacterium isolated from saline and alkaline soils in Dechang Township, Zhaodong City, China. Antonie van Leeuwenhoek 2015;107:1075–1083 [CrossRef][PubMed]
    [Google Scholar]
  15. Junge K, Gosink JJ, Hoppe HG, Staley JT. Arthrobacter, Brachybacterium and Planococcus isolates identified from Antarctic sea ice brine. Description of Planococcus mcmeekinii, sp. nov. Syst Appl Microbiol 1998;21:306–314 [CrossRef][PubMed]
    [Google Scholar]
  16. Engelhardt MA, Daly K, Swannell RP, Head IM. Isolation and characterization of a novel hydrocarbon-degrading, gram-positive bacterium, isolated from intertidal beach sediment, and description of Planococcus alkanoclasticus sp. nov. J Appl Microbiol 2001;90:237–247 [CrossRef][PubMed]
    [Google Scholar]
  17. Mayilraj S, Prasad GS, Suresh K, Saini HS, Shivaji S et al. Planococcus stackebrandtii sp. nov., isolated from a cold desert of the Himalayas, India. Int J Syst Evol Microbiol 2005;55:91–94 [CrossRef][PubMed]
    [Google Scholar]
  18. Yoon JH, Kang SS, Lee KC, Lee ES, Kho YH et al. Planomicrobium koreense gen. nov., sp. nov., a bacterium isolated from the Korean traditional fermented seafood jeotgal, and transfer of Planococcus okeanokoites (Nakagawa et al. 1996) and Planococcus mcmeekinii (Junge et al. 1998) to the genus Planomicrobium. Int J Syst Evol Microbiol 2001;51:1511–1520 [CrossRef][PubMed]
    [Google Scholar]
  19. Dai X, Wang YN, Wang BJ, Liu SJ, Zhou YG. Planomicrobium chinense sp. nov., isolated from coastal sediment, and transfer of Planococcus psychrophilus and Planococcus alkanoclasticus to Planomicrobium as Planomicrobium psychrophilum comb. nov. and Planomicrobium alkanoclasticum comb. nov. Int J Syst Evol Microbiol 2005;55:699–702 [CrossRef][PubMed]
    [Google Scholar]
  20. Jung YT, Kang SJ, Oh TK, Yoon JH, Kim BH. Planomicrobium flavidum sp. nov., isolated from a marine solar saltern, and transfer of Planococcus stackebrandtii Mayilraj et al. 2005 to the genus Planomicrobium as Planomicrobium stackebrandtii comb. nov. Int J Syst Evol Microbiol 2009;59:2929–2933 [CrossRef][PubMed]
    [Google Scholar]
  21. Zhou Y, Wei W, Wang X, Lai R. Proposal of Sinomonas flava gen. nov., sp. nov., and description of Sinomonas atrocyanea comb. nov. to accommodate Arthrobacter atrocyaneus. Int J Syst Evol Microbiol 2009;59:259–263 [CrossRef][PubMed]
    [Google Scholar]
  22. Beveridge TJ, Lawrence JR, Murray RGE. Sampling and staining for light microscopy. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp.19–33
    [Google Scholar]
  23. Chung Y, Kobayashi T, Kanai H, Akiba T, Kudo T. Purification and properties of extracellular amylase from the hyperthermophilic archeon Thermococccus profundus DT5432. Appl Environ Microbiol 1995;61:1502–1506
    [Google Scholar]
  24. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  25. Zhou Y, Dong J, Wang X, Huang X, Zhang KY et al. Chryseobacterium flavum sp. nov., isolated from polluted soil. Int J Syst Evol Microbiol 2007;57:1765–1769 [CrossRef][PubMed]
    [Google Scholar]
  26. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp.115–175
    [Google Scholar]
  27. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007;57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  28. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  29. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  30. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  31. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983;[CrossRef]
    [Google Scholar]
  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  33. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  34. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter yhybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  35. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464[CrossRef]
    [Google Scholar]
  36. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newslett 1990;20:1–6
    [Google Scholar]
  37. Luo X, Zhang J, Li D, Xin Y, Xin D et al. Planomicrobium soli sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014;64:2700–2705 [CrossRef][PubMed]
    [Google Scholar]
  38. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
    [Google Scholar]
  39. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972;36:7–477[PubMed]
    [Google Scholar]
  40. Collins MD. Isoprenoid quinone analysis in classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp.267–287
    [Google Scholar]
  41. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  42. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001960
Loading
/content/journal/ijsem/10.1099/ijsem.0.001960
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error