1887

Abstract

A Gram-stain-positive, oxidase- and catalase-positive, aerobic, rod-shaped bacterium, designated strain SK-3146, was isolated from animal feed. Phylogenetic analysis, based on 16S rRNA gene sequence comparisons, revealed that the strain formed a distinct lineage within the genus that was closely related to JCM 30953 (98.6 %), CCUG 53270 (98.0 %) and DSM 15045 (96.9 %). Cells were non-motile, endospore-forming and formed milky colonies on NA and R2A agar media. Growth of strain SK-3146 occurred at temperatures of 18–45 °C, at pH 6.0–9.5 and between 0.5–3.0 % NaCl (w/v). The major menaquinone was MK-7, with lesser amounts of MK-6 present. The cell wall peptidoglycan of strain SK-3146 contained -diaminopimelic acid. The major fatty acids were anteiso-C and iso-C. The major polar lipids were diphosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content was 53.8 mol% and the DNA–DNA hybridization relatedness values between strain SK-3146 and . JCM 30953 and . CCUG 53270 were 26.13±0.8 % and 38.7±0.6 %, respectively. The phenotypic, phylogenetic and chemotaxonomic results indicate that strain SK-3146 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SK-3146 (=KACC 18876=LMG 29568).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001955
2017-07-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2343.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001955&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 1993;64:253–260[PubMed][CrossRef]
    [Google Scholar]
  2. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997;47:289–298 [CrossRef][PubMed]
    [Google Scholar]
  3. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997;47:289–298 [CrossRef][PubMed]
    [Google Scholar]
  4. Slepecky RA, Hemphill HE. The genus Bacillus-nonmedical. In Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH. (editors) The Prokaryotes New York: Springer; 1992; pp.1663–1696
    [Google Scholar]
  5. Yao R, Wang R, Wang D, Su J, Zheng S et al. Paenibacillus selenitireducens sp. nov., a selenite-reducing bacterium isolated from a selenium mineral soil. Int J Syst Evol Microbiol 2014;64:805–811 [CrossRef][PubMed]
    [Google Scholar]
  6. Jiang B, Zhao X, Liu J, Fu L, Yang C et al. Paenibacillus shenyangensis sp. nov., a bioflocculant-producing species isolated from soil under a peach tree. Int J Syst Evol Microbiol 2015;65:220–224 [CrossRef][PubMed]
    [Google Scholar]
  7. Jin HJ, Zhou YG, Liu HC, Chen SF. Paenibacillus jilunlii sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Begonia semperflorens. Int J Syst Evol Microbiol 2011;61:1350–1355 [CrossRef][PubMed]
    [Google Scholar]
  8. Siddiqi MZ, Siddiqi MH, Im WT, Kim YJ, Yang DC. Paenibacillus kyungheensis sp. nov., isolated from flowers of magnolia. Int J Syst Evol Microbiol 2015;65:3959–3964 [CrossRef][PubMed]
    [Google Scholar]
  9. Dsouza M, Taylor MW, Ryan J, Mackenzie A, Lagutin K et al. Paenibacillus darwinianus sp. nov., isolated from gamma-irradiated Antarctic soil. Int J Syst Evol Microbiol 2014;64:1406–1411 [CrossRef][PubMed]
    [Google Scholar]
  10. Kittiwongwattana C, Thawai C. Paenibacillus lemnae sp. nov., an endophytic bacterium of duckweed (Lemna aequinoctialis). Int J Syst Evol Microbiol 2015;65:107–112 [CrossRef][PubMed]
    [Google Scholar]
  11. Carro L, Flores-Félix JD, Ramírez-Bahena MH, García-Fraile P, Martínez-Hidalgo P et al. Paenibacillus lupini sp. nov., isolated from nodules of Lupinus albus. Int J Syst Evol Microbiol 2014;64:3028–3033 [CrossRef][PubMed]
    [Google Scholar]
  12. Wang L, Baek SH, Cui Y, Lee HG, Lee ST. Paenibacillus sediminis sp. nov., a xylanolytic bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2012;62:1284–1288 [CrossRef][PubMed]
    [Google Scholar]
  13. Tang QY, Yang N, Wang J, Xie YQ, Ren B et al. Paenibacillus algorifonticola sp. nov., isolated from a cold spring. Int J Syst Evol Microbiol 2011;61:2167–2172 [CrossRef][PubMed]
    [Google Scholar]
  14. Liu Y, Liu L, Qiu F, Schumann P, Shi Y et al. Paenibacillus hunanensis sp. nov., isolated from rice seeds. Int J Syst Evol Microbiol 2010;60:1266–1270 [CrossRef][PubMed]
    [Google Scholar]
  15. Cao Y, Chen F, Li Y, Wei S, Wang G. Paenibacillus ferrarius sp. nov., isolated from iron mineral soil. Int J Syst Evol Microbiol 2015;65:165–170 [CrossRef][PubMed]
    [Google Scholar]
  16. Glaeser SP, Falsen E, Busse HJ, Kämpfer P. Paenibacillus vulneris sp. nov., isolated from a necrotic wound. Int J Syst Evol Microbiol 2013;63:777–782 [CrossRef][PubMed]
    [Google Scholar]
  17. Ludwig W, Schleifer KH, Whitman WB. Family IV. Paenibacillaceae fam. nov. In De P. (editor) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 3 2009; p.269
    [Google Scholar]
  18. Im WT, Kim SY, Liu QM, Yang JE, Lee ST et al. Nocardioides ginsengisegetis sp. nov., isolated from soil of a ginseng field. J Microbiol 2010;48:623–628 [CrossRef][PubMed]
    [Google Scholar]
  19. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  20. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  21. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  22. Kimura M. The Neutral Theory of Molecular Evolution Cambridge Cambridge: University Press; 1983;[CrossRef]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  24. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  25. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  27. Weon HY, Kim BY, Joa JH, Son JA, Song MH et al. Methylobacterium iners sp. nov. and Methylobacterium aerolatum sp. nov., isolated from air samples in Korea. Int J Syst Evol Microbiol 2008;58:93–96 [CrossRef][PubMed]
    [Google Scholar]
  28. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982;44:992–993[PubMed]
    [Google Scholar]
  29. Gomori G. Preparation of buffers for use in enzyme studies. In Colowick SP, Kaplan NO. (editors) Methods in Enzymology NewYork: Academic Press; 1955; pp.138–146
    [Google Scholar]
  30. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria Cambridge: Cambridge University Press; 1974
    [Google Scholar]
  31. Skerman VBD. A Guide to the Identification of the Genera of Bacteria, 2nd ed. Baltimore: Williams & Wilkins; 1967
    [Google Scholar]
  32. Ten LN, Im WT, Kim MK, Kang MS, Lee ST. Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 2004;56:375–382 [CrossRef][PubMed]
    [Google Scholar]
  33. Kämpfer P. Evaluation of the Titertek-Enterobac-Automated System (TTE-AS) for identification of members of the family Enterobacteriaceae. Zentralbl Bakteriol 1990;273:164–172 [CrossRef][PubMed]
    [Google Scholar]
  34. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991;21:227–251 [CrossRef][PubMed]
    [Google Scholar]
  35. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  36. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  37. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464[CrossRef]
    [Google Scholar]
  38. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  39. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp.267–287
    [Google Scholar]
  40. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972;36:407–477[PubMed]
    [Google Scholar]
  41. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  42. Baik KS, Lim CH, Choe HN, Kim EM, Seong CN. Paenibacillus rigui sp. nov., isolated from a freshwater wetland. Int J Syst Evol Microbiol 2011;61:529–534 [CrossRef][PubMed]
    [Google Scholar]
  43. Park MJ, Kim HB, An DS, Yang HC, Oh ST et al. Paenibacillus soli sp. nov., a xylanolytic bacterium isolated from soil. Int J Syst Evol Microbiol 2007;57:146–150 [CrossRef][PubMed]
    [Google Scholar]
  44. Kim BC, Kim MN, Lee KH, Kwon SB, Bae KS et al. Paenibacillus filicis sp. nov., isolated from the rhizosphere of the fern. J Microbiol 2009;47:524–529 [CrossRef][PubMed]
    [Google Scholar]
  45. Yoon JH, Seo WT, Shin YK, Kho YH, Kang KH et al. Paenibacillus chinjuensis sp. nov., a novel exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 2002;52:415–421 [CrossRef][PubMed]
    [Google Scholar]
  46. Heyndrickx M, Vandemeulebroecke K, Scheldeman P, Hoste B, Kersters K et al. Paenibacillus (formerly Bacillus) gordonae (Pichinoty et al. 1986) Ash et al. 1994 is a later subjective synonym of Paenibacillus (formerly Bacillus) validus (Nakamura 1984) Ash et al. 1994: emended description of P. validus. Int J Syst Bacteriol 1995;45:661–669 [CrossRef][PubMed]
    [Google Scholar]
  47. Nakamura LK. Bacillus amylolyticus sp. nov., nom. rev., Bacillus lautus sp. nov., nom. rev., Bacillus pabuli sp. nov., nom. rev., and Bacillus validus sp. nov., nom. rev. Int J Syst Bacteriol 1984;34:224–226 [CrossRef]
    [Google Scholar]
  48. Kuroshima KI, Sakane T, Takata R, Yokota A. Bacillus ehimensis sp. nov. and Bacillus chitinolyticus sp. nov., new chitinolytic members of the genus Bacillus. Int J Syst Bacteriol 1996;46:76–80 [CrossRef]
    [Google Scholar]
  49. Chung YR, Kim CH, Hwang I, Chun J. Paenibacillus koreensis sp. nov., a new species that produces an iturin-like antifungal compound. Int J Syst Evol Microbiol 2000;50:1495–1500 [CrossRef][PubMed]
    [Google Scholar]
  50. Nakamura LK. Bacillus alginolyticus sp. nov. and Bacillus chondroitinus sp. nov., two alginate-degrading species. Int J Syst Bacteriol 1987;37:284–286 [CrossRef]
    [Google Scholar]
  51. Kim JM, Lee SH, Lee SH, Choi EJ, Jeon CO. Paenibacillus hordei sp. nov., isolated from naked barley in Korea. Antonie van Leeuwenhoek 2013;103:3–9 [CrossRef][PubMed]
    [Google Scholar]
  52. Yoon JH, Oh HM, Yoon BD, Kang KH, Park YH. Paenibacillus kribbensis sp. nov. and Paenibacillus terrae sp. nov., bioflocculants for efficient harvesting of algal cells. Int J Syst Evol Microbiol 2003;53:295–301 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001955
Loading
/content/journal/ijsem/10.1099/ijsem.0.001955
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error