1887

Abstract

A bacterial strain designated RTAE36 was isolated from wheat roots in northern Spain. Phylogenetic analyses based on 16S rRNA gene sequence placed the isolate into the genus Paenibacillus with its closest relative being Paenibacillus borealis DSM 13188 with 97.7 % sequence similarity. Cells of the isolate were facultatively anaerobic, Gram-stain-positive, motile and sporulating rods. Catalase and oxidase were positive. Gelatin, casein and starch were not hydrolysed. Growth was supported by many carbohydrates and organic acids as carbon sources. MK-7 was the only menaquinone detected, and anteiso-C15 : 0, C16  : 0, iso-C14 : 0 and iso-C16 : 0 were the major fatty acids. The polar lipids profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid, two unidentified phospholipids, three unidentified phosphoaminolipids, one unidentified glycolipid and one unidentified lipid. m eso-Diaminopimelic acid was detected in the cell-wall peptidoglycan. Strains RTAE36 and P. borealis DSM 13188 had an mean DNA–DNA relatedness of 39 % and differed in several phenotypic and chemotaxonomic characteristics, confirming that strain RTAE36 should be considered as a representative of a novel species of the genus Paenibacillus , for which the name Paenibacillus tritici sp. nov. is proposed. The type strain is RTAE36 (=LMG 29502=CECT 9125).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001949
2017-07-12
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2312.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001949&mimeType=html&fmt=ahah

References

  1. Priest FG. Genus I. Paenibacillus. In De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W et al. (editors) The Firmicutes, Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 2 New York, US: Springer; 2009; pp. 269– 296
    [Google Scholar]
  2. Puri A, Padda KP, Chanway CP. Evidence of nitrogen fixation and growth promotion in canola (Brassica Napus L.) by an endophytic diazotroph Paenibacillus polymyxa P2b-2R. Biol Fertil Soils 2016; 52: 119– 125 [CrossRef]
    [Google Scholar]
  3. Gao JL, Lv FY, Wang XM, Qiu TL, Yuan M et al. Paenibacillus wenxiniae sp. nov., a nifH gene-harbouring endophytic bacterium isolated from maize. Antonie van Leeuwenhoek 2015; 108: 1015– 1022 [CrossRef] [PubMed]
    [Google Scholar]
  4. Gao J-L, Qiu T-L, Wang X-M, Lv F-Y, Yang M-M et al. Paenibacillus radicis sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 2016; 66: 807– 811 [CrossRef]
    [Google Scholar]
  5. Menéndez E, Carro L, Tejedor C, Fernández-Pascual M, Martínez-Molina E et al. Paenibacillus hispanicus sp. nov. isolated from Triticum aestivum roots. Int J Syst Evol Microbiol 2016; 66: 4628– 4632 [CrossRef] [PubMed]
    [Google Scholar]
  6. Doetsch RN. Determinative methods of light microscopy. In Gerdhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981; pp. 21– 33
    [Google Scholar]
  7. Rivas R, García-Fraile P, Mateos PF, Martínez-Molina E, Velázquez E. Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera. Lett Appl Microbiol 2007; 44: 181– 187 [CrossRef] [PubMed]
    [Google Scholar]
  8. Rodríguez-Díaz M, Lebbe L, Rodelas B, Heyrman J, de Vos P et al. Paenibacillus wynnii sp. nov., a novel species harbouring the nifH gene, isolated from Alexander Island, Antarctica. Int J Syst Evol Microbiol 2005; 55: 2093– 2099 [CrossRef] [PubMed]
    [Google Scholar]
  9. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403– 410 [CrossRef] [PubMed]
    [Google Scholar]
  10. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
    [Google Scholar]
  11. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876– 4882 [CrossRef] [PubMed]
    [Google Scholar]
  12. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  14. Rogers JS, Swofford DL. A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. Syst Biol 1998; 47: 77– 89 [PubMed] [CrossRef]
    [Google Scholar]
  15. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731– 2739 [CrossRef] [PubMed]
    [Google Scholar]
  16. Xie JB, du Z, Bai L, Tian C, Zhang Y et al. Comparative genomic analysis of N2-fixing and non-N2-fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes. PLoS Genet 2014; 10: e1004231 [CrossRef] [PubMed]
    [Google Scholar]
  17. Chun J, Goodfellow M. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 1995; 45: 240– 245 [CrossRef] [PubMed]
    [Google Scholar]
  18. Mandel M, Mamur J. Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 1968; 12B: 195– 206 [CrossRef]
    [Google Scholar]
  19. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997; 47: 289– 298 [CrossRef] [PubMed]
    [Google Scholar]
  20. Elo S, Suominen I, Kämpfer P, Juhanoja J, Salkinoja-Salonen M et al. Paenibacillus borealis sp. nov., a nitrogen-fixing species isolated from spruce forest humus in Finland. Int J Syst Evol Microbiol 2001; 51: 535– 545 [CrossRef] [PubMed]
    [Google Scholar]
  21. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
    [Google Scholar]
  22. Willems A, Doignon-Bourcier F, Goris J, Coopman R, de Lajudie P et al. DNA-DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 2001; 51: 1315– 1322 [CrossRef] [PubMed]
    [Google Scholar]
  23. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  24. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  25. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66: 199– 202 [CrossRef]
    [Google Scholar]
  26. Rhuland LE, Work E, Denman RF, Hoare DS. The behavior of the isomers of α,ε-diaminopimelic acid on paper chromatograms. J Am Chem Soc 1955; 77: 4844– 4846 [CrossRef]
    [Google Scholar]
  27. Schumann P. Peptidoglycan structure. In Rainey F, Oren A. (editors) Taxonomy of Prokaryotes, Methods in Microbiologyvol. 38 London: Academic Press; 2011; pp. 101– 129 [CrossRef]
    [Google Scholar]
  28. Kämpfer P, Rosselló-Mora R, Falsen E, Busse HJ, Tindall BJ. Cohnella thermotolerans gen. nov., sp. nov., and classification of 'Paenibacillus hongkongensis' as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 2006; 56: 781– 786 [CrossRef] [PubMed]
    [Google Scholar]
  29. Logan NA, Berge O, Bishop AH, Busse HJ, de Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59: 2114– 2121 [CrossRef] [PubMed]
    [Google Scholar]
  30. Claus D, Berkeley RCW. Genus Bacillus Cohn 1872, 174AL. In Sneath PHA, Mair NS, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 2 Baltimore: Williams & Wilkins; 1986; 1105– 1139
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001949
Loading
/content/journal/ijsem/10.1099/ijsem.0.001949
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error