1887

Abstract

A Gram-stain-negative, strictly aerobic, rod-shaped, non-motile, non-spore-forming bacterial strain, designated YIM X0211, was isolated from a soil sample of Shiling County, Yunnan Province, south-west China. The new isolate was characterized taxonomically by using a polyphasic approach. The strain grew optimally at 30 °C, at pH 7.0 and with 0–3 % (w/v) NaCl. It was positive for catalase and oxidase but negative for HS production. Comparative 16S rRNA gene sequence analysis showed that strain YIM X0211 fell within the cluster comprising species and clustered with DSM 11724 (97.93 % similarity). The G+C content of the genomic DNA was 41.2 mol%. The predominant respiratory quinone was menaquinone MK-7. The major fatty acids were iso-C 2-OH, iso-C 3-OH and summed feature 3 (Cω7/C ω6). The polar lipids consisted of phosphatidylethanolamine, sphingolipid, and several unknown phospholipids or lipids. The DNA–DNA hybridization value between strain YIM X0211 and DSM 11724 was 42.3±0.4 %, which is below the 70 % limit for species delineation. These chemotaxonomic data supported the affiliation of strain YIM X0211 to the genus . Based on the recorded phenotypic and genotypic characteristics, it is determined that the isolate represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is YIM X0211 (=KCTC 42696=CGMCC 1.15966).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001946
2017-07-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2284.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001946&mimeType=html&fmt=ahah

References

  1. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N. Sphingobacterium gen. nov., S phingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 1983;33:580–598 [CrossRef]
    [Google Scholar]
  2. Shivaji S, Ray MK, Shyamala Rao N, Saisree L, Jagannadham MV et al. Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. Int J Syst Bacteriol 1992;42:102–106 [CrossRef]
    [Google Scholar]
  3. Takeuchi M, Yokota A. Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb. nov., Sphingobacterium thalpophilum comb. nov. and two genospecies of the genus Sphingobacterium, and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum. J Gen Appl Microbiol 1992;38:465–482 [CrossRef]
    [Google Scholar]
  4. Farfán M, Montes MJ, Marqués AM. Reclassification of Sphingobacterium antarcticum Shivaji et al. 1992 as Pedobacter antarcticus comb. nov. and Pedobacter piscium (Takeuchi and Yokota 1993) Steyn et al. 1998 as a later heterotypic synonym of Pedobacter antarcticus. Int J Syst Evol Microbiol 2014;64:863–868 [CrossRef][PubMed]
    [Google Scholar]
  5. Steyn PL, Segers P, Vancanneyt M, Sandra P, Kersters K et al. Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 1998;48:165–177 [CrossRef][PubMed]
    [Google Scholar]
  6. Holmes B, Weaver RE, Steigerwalt AG, Brenner DJ. A taxonomic study of F lavobacterium spiritivorum and Sphingobacterium mizutae: proposal of Flavobacterium yabuuchiae sp. nov. and Flavobacterium mizutaii comb. nov. Int J Syst Bacteriol 1988;38:348–353 [CrossRef]
    [Google Scholar]
  7. Ahmed I, Ehsan M, Sin Y, Paek J, Khalid N et al. Sphingobacterium pakistanensis sp. nov., a novel plant growth promoting rhizobacteria isolated from rhizosphere of Vigna mungo. Antonie van Leeuwenhoek 2014;105:325–333 [CrossRef][PubMed]
    [Google Scholar]
  8. Choi HA, Lee SS. Sphingobacterium kyonggiense sp. nov., isolated from chloroethene-contaminated soil, and emended descriptions of Sphingobacterium daejeonense and Sphingobacterium mizutaii. Int J Syst Evol Microbiol 2012;62:2559–2564 [CrossRef][PubMed]
    [Google Scholar]
  9. Albert RA, Waas NE, Pavlons SC, Pearson JL, Ketelboeter L et al. Sphingobacterium psychroaquaticum sp. nov., a psychrophilic bacterium isolated from lake Michigan water. Int J Syst Evol Microbiol 2013;63:952–958 [CrossRef][PubMed]
    [Google Scholar]
  10. Peng S, Hong DD, Xin YB, Jun LM, Hong WG. Sphingobacterium yanglingense sp. nov., isolated from the nodule surface of soybean. Int J Syst Evol Microbiol 2014;64:3862–3866 [CrossRef][PubMed]
    [Google Scholar]
  11. Schmidt VS, Wenning M, Scherer S. Sphingobacterium lactis sp. nov. and Sphingobacterium alimentarium sp. nov., isolated from raw milk and a dairy environment. Int J Syst Evol Microbiol 2012;62:1506–1511 [CrossRef][PubMed]
    [Google Scholar]
  12. Sun LN, Zhang J, Chen Q, He J, Li SP. Sphingobacterium caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2013;63:2260–2264 [CrossRef][PubMed]
    [Google Scholar]
  13. Feng H, Zeng Y, Huang Y. Sphingobacterium paludis sp. nov., isolated from wetland soil. Int J Syst Evol Microbiol 2014;64:3453–3458 [CrossRef][PubMed]
    [Google Scholar]
  14. Liu R, Liu H, Zhang CX, Yang SY, Liu XH et al. Sphingobacterium siyangense sp. nov., isolated from farm soil. Int J Syst Evol Microbiol 2008;58:1458–1462 [CrossRef][PubMed]
    [Google Scholar]
  15. Lee DH, Hur JS, Kahng HY. Sphingobacterium cladoniae sp. nov., isolated from lichen, Cladonia sp., and emended description of Sphingobacterium siyangense. Int J Syst Evol Microbiol 2013;63:755–760 [CrossRef][PubMed]
    [Google Scholar]
  16. Wauters G, Janssens M, de Baere T, Vaneechoutte M, Deschaght P. Isolates belonging to CDC group II-i belong predominantly to Sphingobacterium mizutaii Yabuuchi et al. 1983: emended descriptions of S. mizutaii and of the genus Sphingobacterium. Int J Syst Evol Microbiol 2012;62:2598–2601 [CrossRef][PubMed]
    [Google Scholar]
  17. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007;57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  18. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  19. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  20. Hall TA. Bio Edit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  23. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  24. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  25. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983;[CrossRef]
    [Google Scholar]
  26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  27. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  28. Cerny G. Studies on the aminopeptidase test for the distinction of gram-negative from gram-positive bacteria. Eur J Appl Microbiol Biotechnol 1978;5:113–122 [CrossRef]
    [Google Scholar]
  29. Lai Q, Yuan J, Gu L, Shao Z. Marispirillum indicum gen. nov., sp. nov., isolated from a deep-sea environment. Int J Syst Evol Microbiol 2009;59:1278–1281 [CrossRef][PubMed]
    [Google Scholar]
  30. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956;178:703 [CrossRef][PubMed]
    [Google Scholar]
  31. Mergaert J, Cnockaert MC, Swings J. Fulvimonas soli gen. nov., sp. nov., a γ-proteobacterium isolated from soil after enrichment on acetylated starch plastic. Int J Syst Evol Microbiol 2002;52:1285–1289 [CrossRef][PubMed]
    [Google Scholar]
  32. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Microbiol 1979;47:87–95 [CrossRef]
    [Google Scholar]
  33. Collins M, Jones D. Lipids in the classification and identification of coryne form bacteria containing peptidoglycans based on 2, 4‐diaminobutyric acid. J Bacteriol 1980;48:459–470
    [Google Scholar]
  34. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  35. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982;5:2359–2367 [CrossRef]
    [Google Scholar]
  36. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newwark, DE: MIDI Inc; 1990
    [Google Scholar]
  37. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  38. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  39. Christensen H, Angen O, Mutters R, Olsen JE, Bisgaard M. DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 2000;50:1095–1102 [CrossRef][PubMed]
    [Google Scholar]
  40. Li SH, Yu XY, Park DJ, Hozzein WN, Kim CJ et al. Rhodococcus soli sp. nov., an actinobacterium isolated from soil using a resuscitative technique. Antonie Van Leeuwenhoek 2015;107:357–366 [CrossRef][PubMed]
    [Google Scholar]
  41. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001946
Loading
/content/journal/ijsem/10.1099/ijsem.0.001946
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error