1887

Abstract

A bacterial strain designated CRZM18R was isolated from a root of in Spain. The analysis of the 16S rRNA gene sequence showed that this strain belongs to the genus , with ALA10B2 and H66 being the most closely related species with 98.3 and 97.9 % sequence similarity, respectively. The analysis of the concatenated and genes showed that strain CRZM18R forms a cluster with these species and also with PTYR-5, but the and genes of strain CRZM18R were phylogenetically distant, with identities lower than 90 and 96 %, respectively. DNA–DNA hybridization analysis showed mean relatedness of 43, 22 and 38 % with respect to ALA10B2, LMG 28229 and LMG 27604. Phenotypic characteristics also differed from those of the most closely related species of the genus . The major fatty acids were those from summed feature 8 (Cω6/C ω7) and C. Based on the genotypic, chemotaxonomic and phenotypic data obtained in this study, we propose to classify strain CRZM18R in a novel species named sp. nov. (type strain CRZM18R=LMG 29735=CECT 9169).

Keyword(s): endophyte , maize , Rhizobium , Spain and Zea mays
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001944
2017-07-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2306.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001944&mimeType=html&fmt=ahah

References

  1. Kuykendall LD, Young JM, Martínez-Romero E, Kerr A, Sawada H. Rhizobium. Bergey's Manual of Systematics of Archaea and Bacteria John Wiley & Sons Inc., in association with Bergey's Manual Trust; 2015; pp.1–36
    [Google Scholar]
  2. Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ. Bacterial associations with legumes. CRC Crit Rev Plant Sci 2015;34:17–42 [CrossRef]
    [Google Scholar]
  3. Gutiérrez-Zamora ML, Martínez-Romero E. Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 2001;91:117–126 [CrossRef][PubMed]
    [Google Scholar]
  4. Yanni YG, Dazzo FB. Enhancement of rice production using endophytic strains of Rhizobium leguminosarum bv. trifolii in extensive field inoculation trials within the Egypt Nile delta. Plant Soil 2010;336:129–142 [CrossRef]
    [Google Scholar]
  5. Yanni YG, Dazzo FB, Squartini A, Zanardo M, Zidan MI et al. Assessment of the natural endophytic association between Rhizobium and wheat and its ability to increase wheat production in the Nile delta. Plant Soil 2016;407:367–383 [CrossRef]
    [Google Scholar]
  6. Zhang XX, Gao JS, Cao YH, Sheirdil RA, Wang XC et al. Rhizobium oryzicola sp. nov., potential plant-growth-promoting endophytic bacteria isolated from rice roots. Int J Syst Evol Microbiol 2015;65:2931–2936 [CrossRef][PubMed]
    [Google Scholar]
  7. Vincent JM. The cultivation, isolation and maintenance of rhizobia. In Vincent JM. (editor) A Manual for the Practical Study of Root-Nodule Oxford: Blackwell Scientific Publications; 1970; pp.1–13
    [Google Scholar]
  8. Hungria M, Ardley J, O’Hara GW, Howieson JG. Preservation of rhizobia. In Howieson JG, Dilworth MJ. (editors) Canberra: Australian Centre for International Agricultural Research (ACIAR); 2016; pp.61–71
  9. Rivas R, García-Fraile P, Mateos PF, Martínez-Molina E, Velázquez E. Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera. Lett Appl Microbiol 2007;44:181–187 [CrossRef][PubMed]
    [Google Scholar]
  10. Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA, Young JP. Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 2001;51:2037–2048 [CrossRef][PubMed]
    [Google Scholar]
  11. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  12. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  13. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  15. Rogers JS, Swofford DL. A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. Syst Biol 1998;47:77–89[PubMed][CrossRef]
    [Google Scholar]
  16. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  17. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  18. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  19. Ramírez-Bahena MH, García-Fraile P, Peix A, Valverde A, Rivas R et al. Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (=NCIMB 11478) as Rhizobium pisi sp. nov. Int J Syst Evolution Microbiol 2008;58:2484–2490[CrossRef]
    [Google Scholar]
  20. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  21. Willems A, Doignon-Bourcier F, Goris J, Coopman R, de Lajudie P et al. DNA-DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 2001;51:1315–1322 [CrossRef][PubMed]
    [Google Scholar]
  22. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  23. Chun J, Goodfellow MA. Phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 1995;45:240–245 [CrossRef][PubMed]
    [Google Scholar]
  24. Mandel M, Mamur J. Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 1968;12B:195–206[CrossRef]
    [Google Scholar]
  25. Zhang L, Shi X, Si M, Li C, Zhu L et al. Rhizobium smilacinae sp. nov., an endophytic bacterium isolated from the leaf of Smilacina japonica. Antonie van Leeuwenhoek 2014;106:715–723 [CrossRef][PubMed]
    [Google Scholar]
  26. Chen W, Sheng XF, He LY, Huang Z. Rhizobium yantingense sp. nov., a mineral-weathering bacterium. Int J Syst Evol Microbiol 2015;65:412–417 [CrossRef][PubMed]
    [Google Scholar]
  27. García-Fraile P, Rivas R, Willems A, Peix A, Martens M et al. Rhizobium cellulosilyticum sp. nov., isolated from sawdust of Populus alba. Int J Syst Evol Microbiol 2007;57:844–848 [CrossRef][PubMed]
    [Google Scholar]
  28. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  29. Beringer JE. R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 1974;84:188–198 [CrossRef][PubMed]
    [Google Scholar]
  30. Saïdi S, Ramírez-Bahena MH, Santillana N, Zúñiga D, Álvarez-Martínez E et al. Rhizobium laguerreae sp. nov. nodulates Vicia faba on several continents. Int J Syst Evol Microbiol 2014;64:242–247 [CrossRef][PubMed]
    [Google Scholar]
  31. Peix A, Rivas R, Mateos PF, Martínez-Molina E, Rodríguez-Barrueco C et al. Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro. Int J Syst Evol Microbiol 2003;53:2067–2072 [CrossRef][PubMed]
    [Google Scholar]
  32. Claus D, Berkeley RCW. Genus Bacillus Cohn 1872, 174AL. In Sneath PHA, Mair NS, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 2 Baltimore: Williams & Wilkins; 1986; pp.1105–1139
    [Google Scholar]
  33. Velázquez E, Igual JM, Willems A, Fernández MP, Muñoz E et al. Mesorhizobium chacoense sp. nov., a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int J Syst Evol Microbiol 2001;51:1011–1021 [CrossRef][PubMed]
    [Google Scholar]
  34. Bergersen FJ. The growth of Rhizobium in synthetic media. Aust J Biol 1961;14:349–360
    [Google Scholar]
  35. Perret X, Staehelin C, Broughton WJ. Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 2000;64:180–201 [CrossRef][PubMed]
    [Google Scholar]
  36. Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P et al. Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 2001;147:981–993 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001944
Loading
/content/journal/ijsem/10.1099/ijsem.0.001944
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error