Description of sp. nov., isolated from the screen of a cellular phone Free

Abstract

A novel bacterial strain, designated S5H2222, was isolated form the screen of a cellular phone. The cells were Gram-stain-positive, rod-shaped, aerobic and motile, and endospores are formed. S5H2222 grew as pale white colonies on trypticase soy agar and the best growth was observed at 37 °C (10–55 °C) and at pH 7.0 (5.0–9.0). S5H2222 could tolerate up to 10 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences placed this strain within the genus and it exhibited high 16S rRNA gene sequence similarity to LAM612 (97.8 %), 2RL3-2 (97.4 %) and BLB-1 (97.2 %). The DNA–DNA relatedness of the strain with JCM 19611, KACC 16626 and KACC 16611 was 57, 64 and 55 % respectively. The genomic DNA G+C content was 39.8 mol%. The major fatty acids of S5H2222 were iso-C, anteiso-C, iso-C and anteiso-C. MK-7 was the only menaquinone and the main polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine, four unidentified polar lipids were also present. The diagnostic amino acids in the cell wall peptidoglycan contained Lys–Asp (type A4α). On the basis of the results of the phenotypic and genotypic characterizations, it was concluded that S5H2222 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is S5H2222 (=MCC 3065=KACC 18714=LMG 29294).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001943
2017-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2289.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001943&mimeType=html&fmt=ahah

References

  1. Ahmed I, Yokota A, Yamazoe A, Fujiwara T. Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysini bacillus fusiformis comb. nov. and Bacillus sphaericus to Lysini bacillus sphaericus comb. nov. Int J Syst Evol Microbiol 2007; 57:1117–1125 [View Article][PubMed]
    [Google Scholar]
  2. Zhao F, Feng Y, Chen R, Zhang J, Lin X. Lysinibacillus alkaliphilus sp. nov., an extremely alkaliphilic bacterium, and emended description of genus Lysinibacillus . Int J Syst Evol Microbiol 2015; 65:2426–2431 [View Article][PubMed]
    [Google Scholar]
  3. Ouoba LI, Vouidibio Mbozo AB, Thorsen L, Anyogu A, Nielsen DS et al. Lysinibacillus louembei sp. nov., a spore-forming bacterium isolated from Ntoba Mbodi, alkaline fermented leaves of cassava from the Republic of the Congo. Int J Syst Evol Microbiol 2015; 65:4256–4262 [View Article][PubMed]
    [Google Scholar]
  4. Azmatunnisa M, Rahul K, Lakshmi KV, Sasikala C, Ramana C. Lysinibacillus acetophenoni sp. nov., a solvent-tolerant bacterium isolated from acetophenone. Int J Syst Evol Microbiol 2015; 65:1741–1748 [View Article][PubMed]
    [Google Scholar]
  5. Begum MA, Rahul K, Sasikala C, Ramana CV. Lysinibacillus xyleni sp. nov., isolated from a bottle of xylene. Arch Microbiol 2016; 198:325–332 [View Article][PubMed]
    [Google Scholar]
  6. Miwa H, Ahmed I, Yokota A, Fujiwara T. Lysinibacillus parviboronicapiens sp. nov., a low-boron-containing bacterium isolated from soil. Int J Syst Evol Microbiol 2009; 59:1427–1432 [View Article][PubMed]
    [Google Scholar]
  7. Liu H, Song Y, Chen F, Zheng S, Wang G. Lysinibacillus manganicus sp. nov., isolated from manganese mining soil. Int J Syst Evol Microbiol 2013; 63:3568–3573 [View Article][PubMed]
    [Google Scholar]
  8. Kong D, Wang Y, Zhao B, Li Y, Song J et al. Lysinibacillus halotolerans sp. nov., isolated from saline–alkaline soil. Int J Syst Evol Microbiol 2014; 64:2593–2598 [View Article][PubMed]
    [Google Scholar]
  9. Yang LL, Huang Y, Liu J, Ma L, Mo MH et al. Lysinibacillus mangiferahumi sp. nov., a new bacterium producing nematicidal volatiles. Antonie Van Leeuwenhoek 2012; 102:53–59 [View Article][PubMed]
    [Google Scholar]
  10. Hayat R, Ahmed I, Paek J, Sin Y, Ehsan M et al. Lysinibacillus composti sp. nov., isolated from compost. Ann Microbiol 2014; 64:1081–1088 [View Article]
    [Google Scholar]
  11. Kämpfer P, Martin K, Glaeser SP. Lysinibacillus contaminans sp. nov., isolated from surface water. Int J Syst Evol Microbiol 2013; 63:3148–3153 [View Article][PubMed]
    [Google Scholar]
  12. Kim SJ, Jang YH, Hamada M, Ahn JH, Weon HY et al. Lysinibacillus chungkukjangi sp. nov., isolated from Chungkukjang, Korean fermented soybean food. J Microbiol 2013; 51:400–404 [View Article][PubMed]
    [Google Scholar]
  13. Glazunova OO, Raoult D, Roux V. Bacillus massiliensis sp. nov., isolated from cerebrospinal fluid. Int J Syst Evol Microbiol 2006; 56:1485–1488 [View Article][PubMed]
    [Google Scholar]
  14. Duan YQ, He ST, Li QQ, Wang MF, Wang WY et al. Lysinibacillus tabacifolii sp. nov., a novel endophytic bacterium isolated from Nicotiana tabacum leaves. J Microbiol 2013; 51:289–294 [View Article][PubMed]
    [Google Scholar]
  15. Zhu C, Sun G, Chen X, Guo J, Xu M. Lysinibacillus varians sp. nov., an endospore-forming bacterium with a filament-to-rod cell cycle. Int J Syst Evol Microbiol 2014; 64:3644–3649 [View Article][PubMed]
    [Google Scholar]
  16. Cisco Systems Inc 2016; Cisco visual networking index: global mobile data traffic forecast update, 2015-2020 white paper. www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html [accessed 3 February 2016]
  17. Meadow JF, Altrichter AE, Green JL. Mobile phones carry the personal microbiome of their owners. Peer J 2014; 2:e447 [View Article][PubMed]
    [Google Scholar]
  18. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–218 [View Article]
    [Google Scholar]
  19. Gulati A, Rahi P, Vyas P. Characterization of phosphate-solubilizing fluorescent pseudomonads from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Curr Microbiol 2008; 56:73–79 [View Article][PubMed]
    [Google Scholar]
  20. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  21. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  23. Leifson E. Atlas of Bacterial Flagellation London: Academic Press; 1960 [CrossRef]
    [Google Scholar]
  24. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  25. Jung MY, Kim JS, Paek WK, Styrak I, Park IS et al. Description of Lysinibacillus sinduriensis sp. nov., and transfer of Bacillus massiliensis and Bacillus odysseyi to the genus Lysinibacillus as Lysini bacillus massiliensis comb. nov. and Lysini bacillus odysseyi comb. nov. with emended description of the genus Lysinibacillus . Int J Syst Evol Microbiol 2012; 62:2347–2355 [View Article][PubMed]
    [Google Scholar]
  26. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of CellularFatty Acids, MIDI Technical Note 101. Newark: MIDI Inc; 1990
    [Google Scholar]
  28. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129 [CrossRef]
    [Google Scholar]
  29. Jeske O, Schüler M, Schumann P, Schneider A, Boedeker C et al. Planctomycetes do possess a peptidoglycan cell wall. Nat Commun 2015; 6:7116 [View Article][PubMed]
    [Google Scholar]
  30. Tindall BJ. Fully saturated menaqionones in the archaebacterium Pyrobaculum islandicum . FEMS Microbiol Lett 1989; 60:251–254 [View Article]
    [Google Scholar]
  31. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231[PubMed]
    [Google Scholar]
  32. Rahi P, Prakash O, Shouche YS. Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based microbial identifications: challenges and scopes for microbial ecologists. Front Microbiol 2016; 7:1359 [View Article][PubMed]
    [Google Scholar]
  33. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4:770–773 [View Article][PubMed]
    [Google Scholar]
  34. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  35. Gillis M, de Ley J, de Cleene M. The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem 1970; 12:143–153 [View Article][PubMed]
    [Google Scholar]
  36. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  37. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001943
Loading
/content/journal/ijsem/10.1099/ijsem.0.001943
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed