1887

Abstract

In this study, three strains belonging to the genus Mesorhizobium , CSLC115N, CSLC19N and CSLC37N, isolated from Lotus corniculatus nodules in Spain, were characterized. Their 16S rRNA gene sequences were closely related to those of Mesorhizobium metallidurans STM 2683, Mesorhizobium tianshanense A-1BS, Mesorhizobium tarimense CCBAU 83306, Mesorhizobium gobiense CCBAU 83330 and Mesorhizobium caraganae CCBAU 11299 with similarity values higher than 99.7 %. The analysis of concatenated recA and glnII genes showed that the most closely related type strains were M. metallidurans STM 2683, M. tianshanense A-1BS and M. tarimense CCBAU 83306 with 96, 95 and 94 % similarity values in the recA gene and 95, 94 and 94 % in the glnII gene, respectively. M. metallidurans LMG 24485, M. tianshanense USDA 3592 and M. tarimense LMG 24338 showed means of 44, 41 and 42 % DNA–DNA relatedness, respectively, with respect to strain CSLC115N. The major fatty acids were those from summed feature 8 (C18 : 1ω7c/C18  : 1ω6c), C16 : 0 and C18 : 1ω7c 11-methyl. The results of phenotypic characterization support that the L. corniculatus nodulating strains analysed in this work belong to a novel species of the genus Mesorhizobium for which the name Mesorhizobium helmanticense sp. nov. is proposed, and the type strain is CSLC115N (= LMG 29734=CECT 9168).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001942
2017-07-10
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2301.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001942&mimeType=html&fmt=ahah

References

  1. Chen WX, Wang ET, Kuykendall DL. Mesorhizobium. Bergey's Manual of Systematics of Archaea and Bacteria John Wiley & Sons Inc., in association with Bergey's Manual Trust; 2015; pp. 1– 11 [CrossRef]
    [Google Scholar]
  2. Jarvis BDW, van Berkum P, Chen WX, Nour SM, Fernandez MP et al. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 1997; 47: 895– 898 [CrossRef]
    [Google Scholar]
  3. Martínez-Hidalgo P, Ramírez-Bahena MH, Flores-Félix JD, Rivas R, Igual JM et al. Revision of the taxonomic status of type strains of Mesorhizobium loti and reclassification of strain USDA 3471T as Mesorhizobium erdmanii sp. nov. and ATCC 33669T Mesorhizobium jarvisii sp. nov. Int J Syst Evol Microbiol 2015; 65: 1703– 1708 [CrossRef] [PubMed]
    [Google Scholar]
  4. Marcos-García M, Menéndez E, Cruz-González X, Velázquez E, Mateos PF et al. The high diversity of Lotus corniculatus endosymbionts in soils of Northwest Spain. Symbiosis 2015; 67: 11– 20 [CrossRef]
    [Google Scholar]
  5. De Meyer SE, Tan HW, Andrews M, Heenan PB, Willems A. Mesorhizobium calcicola sp. nov., M esorhizobium waitakense sp. nov., Mesorhizobium sophorae sp. nov., Mesorhizobium newzealandense sp. nov. and Mesorhizobium kowhaii sp. nov. isolated from sophora root nodules. Int J Syst Evol Microbiol 2016; 66: 786– 795 [CrossRef]
    [Google Scholar]
  6. Vidal C, Chantreuil C, Berge O, Mauré L, Escarré J et al. Mesorhizobium metallidurans sp. nov., a metal-resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, France. Int J Syst Evol Microbiol 2009; 59: 850– 855 [CrossRef] [PubMed]
    [Google Scholar]
  7. Han TX, Han LL, Wu LJ, Chen WF, Sui XH et al. Mesorhizobium gobiense sp. nov. and Mesorhizobium tarimense sp. nov., isolated from wild legumes growing in desert soils of Xinjiang, China. Int J Syst Evol Microbiol 2008; 58: 2610– 2618 [CrossRef] [PubMed]
    [Google Scholar]
  8. Zhu YJ, Kun J, Chen YL, Wang SK, Sui XH et al. Mesorhizobium acaciae sp. nov., isolated from root nodules of Acacia melanoxylon R. Br. Int J Syst Evol Microbiol 2015; 65: 3558– 3563 [CrossRef] [PubMed]
    [Google Scholar]
  9. de Lajudie P, Willems A, Nick G, Moreira F, Molouba F et al. Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 1998; 48: 369– 382 [CrossRef] [PubMed]
    [Google Scholar]
  10. Lorite MJ, Flores-Félix JD, Peix Á, Sanjuán J, Velázquez E. Mesorhizobium olivaresii sp. nov. isolated from Lotus corniculatus nodules. Syst Appl Microbiol 2016; 39: 557– 561 [CrossRef] [PubMed]
    [Google Scholar]
  11. Vinuesa P, León-Barrios M, Silva C, Willems A, Jarabo-Lorenzo A et al. Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 2005; 55: 569– 575 [CrossRef] [PubMed]
    [Google Scholar]
  12. Rivas R, Laranjo M, Mateos PF, Oliveira S, Martínez-Molina E et al. Strains of Mesorhizobium amorphae and Mesorhizobium tianshanense, carrying symbiotic genes of common chickpea endosymbiotic species, constitute a novel biovar (ciceri) capable of nodulating Cicer arietinum. Lett Appl Microbiol 2007; 44: 412– 418 [CrossRef] [PubMed]
    [Google Scholar]
  13. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876– 4882 [CrossRef] [PubMed]
    [Google Scholar]
  14. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425
    [Google Scholar]
  16. Rogers JS, Swofford DL. A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. Syst Biol 1998; 47: 77– 89 [PubMed] [CrossRef]
    [Google Scholar]
  17. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef]
    [Google Scholar]
  18. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731– 2739 [CrossRef] [PubMed]
    [Google Scholar]
  19. Martínez-Hidalgo P, Ramírez-Bahena MH, Flores-Félix JD, Igual JM, Sanjuán J et al. Reclassification of strains MAFF 303099T and R7A into Mesorhizobiumjaponicum sp. nov. Int J Syst Evol Microbiol 2016; 66: 4936– 4941 [CrossRef] [PubMed]
    [Google Scholar]
  20. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
    [Google Scholar]
  21. Willems A, Doignon-Bourcier F, Goris J, Coopman R, de Lajudie P et al. DNA-DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 2001; 51: 1315– 1322 [CrossRef] [PubMed]
    [Google Scholar]
  22. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  23. Chun J, Goodfellow M. A phylogenetic analysis of the genus nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 1995; 45: 240– 245 [CrossRef] [PubMed]
    [Google Scholar]
  24. Mandel M, Mamur J. Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 1968; 12B: 195– 206 [CrossRef]
    [Google Scholar]
  25. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
  26. Velázquez E, Igual JM, Willems A, Fernández MP, Muñoz E et al. Mesorhizobium chacoense sp. nov., a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int J Syst Evol Microbiol 2001; 51: 1011– 1021 [CrossRef] [PubMed]
    [Google Scholar]
  27. Vincent JM. The cultivation, isolation and maintenance of rhizobia. In Vincent JM. (editor) A Manual for the Practical Study of Root-Nodule Oxford: Blackwell Scientific Publications; 1970; pp. 1– 13
    [Google Scholar]
  28. Peix A, Rivas R, Mateos PF, Martínez-Molina E, Rodríguez-Barrueco C et al. Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro. Int J Syst Evol Microbiol 2003; 53: 2067– 2072 [CrossRef] [PubMed]
    [Google Scholar]
  29. Bergersen FJ. The growth of Rhizobium in synthetic media. Aust J Biol 1961; 14: 349– 360
    [Google Scholar]
  30. Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ. Bacterial associations with legumes. CRC Crit Rev Plant Sci 2015; 34: 17– 42 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001942
Loading
/content/journal/ijsem/10.1099/ijsem.0.001942
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error