1887

Abstract

A novel Gram-stain-negative, aerobic and rod-shaped marine bacterium, designated strain HMF4135, was isolated from a sand sample which was collected from the seashore of the South Sea, Republic of Korea. It required NaCl for growth and exhibited optimal growth at 30 °C, with 2 % (w/v) NaCl and at pH 7–8. Cellular fatty acids were dominated by C16 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 1ω9c and C12 : 0 3-OH. The predominant isoprenoid quinone was ubiquinone-8 (Q-8). Polar lipids consisted of phosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content was 41.9 mol%. Phylogeny based on 16S rRNA gene sequences showed that strain HMF4135 formed a distinct species-level lineage within the genus Thalassotalea of the class Gammaproteobacteria and was most closely related to Thalassotalea ponticola GJSW-36 (96.4 % similarity). Based on the distinctive phenotypic characteristics and phylogenetic analysis, it is concluded that strain HMF4135 represents a novel species of the genus Thalassotalea , for which the name Thalassotalea litorea sp. nov. is proposed. The type strain is HMF4135 (=KCTC 52154=NBRC 112672).

Keyword(s): 16S rRNA gene and seashore sand
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001938
2017-07-12
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2268.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001938&mimeType=html&fmt=ahah

References

  1. Ivanova EP, Flavier S, Christen R. Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 2004; 54: 1773– 1788 [CrossRef] [PubMed]
    [Google Scholar]
  2. Bowman JP. The family Colwelliaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. The Prokaryotes Gammaproteobacteria, 4th ed. Berlin: Springer; 2014; pp 179– 195
    [Google Scholar]
  3. Zhang Y, Tang K, Shi X, Zhang XH. Description of Thalassotalea piscium gen. nov., sp. nov., isolated from flounder (Paralichthys olivaceus), reclassification of four species of the genus Thalassomonas as members of the genus Thalassotalea gen. nov. and emended description of the genus Thalassomonas. Int J Syst Evol Microbiol 2014; 64: 1223– 1228 [CrossRef] [PubMed]
    [Google Scholar]
  4. Park S, Jung YT, Kang CH, Park JM, Yoon JH. Thalassotalea ponticola sp. nov., isolated from seawater, reclassification of Thalassomonas fusca as Thalassotalea fusca comb. nov. and emended description of the genus Thalassotalea. Int J Syst Evol Microbiol 2014; 64: 3676– 3682 [CrossRef] [PubMed]
    [Google Scholar]
  5. Hou TT, Liu Y, Zhong ZP, Liu HC, Liu ZP. Thalassotalea marina sp. nov., isolated from a marine recirculating aquaculture system, reclassification of Thalassomonas eurytherma as Thalassotalea eurytherma comb. nov. and emended description of the genus Thalassotalea. Int J Syst Evol Microbiol 2015; 65: 4710– 4715 [CrossRef] [PubMed]
    [Google Scholar]
  6. Chen WM, Liu LP, Chen CA, Wang JT, Sheu SY. Thalassotalea montiporae sp. nov., isolated from the encrusting pore coral Montipora aequituberculata. Int J Syst Evol Microbiol 2016; 66: 4077– 4084 [CrossRef] [PubMed]
    [Google Scholar]
  7. Xu ZX, Lu DC, Liang QY, Chen GJ, Du ZJ. Thalassotalea sediminis sp. nov., isolated from coastal sediment. Antonie Van Leeuwenhoek 2016; 109: 371– 378 [CrossRef] [PubMed]
    [Google Scholar]
  8. Sheu SY, Liu LP, Tang SL, Chen WM. Thalassotalea euphylliae sp. nov., isolated from the torch coral Euphyllia glabrescens. Int J Syst Evol Microbiol 2016; 66: 5039– 5045 [CrossRef] [PubMed]
    [Google Scholar]
  9. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp. 125– 175
    [Google Scholar]
  10. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
    [Google Scholar]
  11. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  12. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28: 1823– 1829 [CrossRef] [PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  14. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  15. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  16. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef]
    [Google Scholar]
  17. Hucker GJ. A new modification and application of the gram stain. J Bacteriol 1921; 6: 395– 397 [PubMed]
    [Google Scholar]
  18. Brown AE. Benson’s Microbiological Application Laboratory Manual in General Microbiology, 10th ed. New York: McGraw-Hill; 2007
    [Google Scholar]
  19. CLSI Performance standards for antimicrobial disk susceptibility testing: approved standard CLSI Document M02-A11, 11th ed. PA: Clinical and Laboratory Standards Institute; 2012
    [Google Scholar]
  20. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4: 770– 773 [CrossRef] [PubMed]
    [Google Scholar]
  21. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  22. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  23. Collins MD. Analysis of isoprenoid quinones. In Gottschalk G. (editor) Methods in Microbiologyvol. 18 New York: Acad. Press; 1985; pp. 329– 366
    [Google Scholar]
  24. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of nocardia and related bacteria. Int J Syst Bacteriol 1977; 27: 104– 117 [CrossRef]
    [Google Scholar]
  25. Jung YT, Park S, Yoon JH. Thalassomonas fusca sp. nov., a novel gammaproteobacterium isolated from tidal flat sediment. Antonie Van Leeuwenhoek 2014; 105: 81– 87 [CrossRef] [PubMed]
    [Google Scholar]
  26. Yi H, Bae KS, Chun J. Thalassomonas ganghwensis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2004; 54: 377– 380 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001938
Loading
/content/journal/ijsem/10.1099/ijsem.0.001938
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error