1887

Abstract

A Gram-stain-negative, aerobic, rod-shaped bacterium with a single polar flagellum, designated strain DCSW07, was isolated from the surface water of the Bohai Sea, China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain DCSW07 shared highest similarity (96.97 %) with Phaeobacter gallaeciensis DSM 26640, formed a lineage within the family Rhodobacteraceae and was distinct from the most closely related genera Phaeobacter and Pseudooceanicola (96.6–96.8 and 95.8–96.2 % 16S rRNA gene sequence similarity, respectively). Optimal growth occurred in the presence of 6 % (w/v) NaCl, at pH 6.0 and at 28 °C. Strain DCSW07 contained phosphatidylcholine, phosphatidylethanolamine, an unidentified phospholipid and two unidentified polar lipids as the major polar lipids, and C18 : 1ω7c as the main fatty acid (>10 % of the total). The DNA G+C content of strain DCSW07 was 64.8 mol%. On the basis of this polyphasic study, strain DCSW07 is considered to represent a novel species of a new genus in the Roseobacter clade of the family Rhodobacteraceae , for which the name Paraphaeobacter pallidus gen. nov., sp. nov. is proposed. The type strain of Paraphaeobacter pallidus is DCSW07 (=KCTC 52369=MCCC 1K03197=JCM 31458=CGMCC 1.15762).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001935
2017-08-15
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2520.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001935&mimeType=html&fmt=ahah

References

  1. Garrity GM, Bell JA, Lilburn T. Family I. Rhodobacteraceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 2 The Proteobacteria, part C, The Alpha-, Beta-, Delta-, and Epsilonproteobacteria New York: Springer; 2005; pp.161–229
    [Google Scholar]
  2. Brinkhoff T, Giebel HA, Simon M. Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol 2008;189:531–539 [CrossRef][PubMed]
    [Google Scholar]
  3. Buchan A, González JM, Moran MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol 2005;71:5665–5677 [CrossRef][PubMed]
    [Google Scholar]
  4. Wagner-Döbler I, Biebl H. Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol 2006;60:255–280 [CrossRef][PubMed]
    [Google Scholar]
  5. Brinkhoff T, Bach G, Heidorn T, Liang L, Schlingloff A et al. Antibiotic production by a roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl Environ Microbiol 2004;70:2560–2565 [CrossRef][PubMed]
    [Google Scholar]
  6. Martens T, Gram L, Grossart HP, Kessler D, Müller R et al. Bacteria of the Roseobacter clade show potential for secondary metabolite production. Microb Ecol 2007;54:31–42 [CrossRef][PubMed]
    [Google Scholar]
  7. Moran MA, Belas R, Schell MA, González JM, Sun F et al. Ecological genomics of marine Roseobacters. Appl Environ Microbiol 2007;73:4559–4569 [CrossRef][PubMed]
    [Google Scholar]
  8. Yu T, Yin Q, Song X, Zhao R, Shi X et al. Aquimarina longa sp. nov., isolated from seawater, and emended description of Aquimarina muelleri. Int J Syst Evol Microbiol 2013;63:1235–1240 [CrossRef][PubMed]
    [Google Scholar]
  9. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  10. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  11. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  12. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  13. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  14. Beveridge TJ, Lawrence JG, Murray RGE. Sampling and staining for light microscopy. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007; pp.19–33
    [Google Scholar]
  15. Lyman J, Fleming RH. Composition of seawater. J Mar Res 1940;3:134–146
    [Google Scholar]
  16. Tindall BJ, Sikorski J, Smibert RM, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007; pp.330–393
    [Google Scholar]
  17. Hsu SC, Lockwood JL. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl Microbiol 1975;29:422–426[PubMed]
    [Google Scholar]
  18. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
  19. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  20. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207[CrossRef]
    [Google Scholar]
  21. Xie CH, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003;49:345–349 [CrossRef][PubMed]
    [Google Scholar]
  22. Moore ERB, Arnscheidt A, Krüger A, Strömpl C, Mau M et al. Simplified protocols for the preparation of genomic DNA from bacterial cultures. In Akkermans ADL, van Elsas JD, de Bruijn FJ. (editors) Molecular Microbial Ecology Manual Kluwer: Dordrecht; 1999; pp.1–15
    [Google Scholar]
  23. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  24. Biebl H, Allgaier M, Lünsdorf H, Pukall R, Tindall BJ et al. Roseovarius mucosus sp. nov., a member of the Roseobacter clade with trace amounts of bacteriochlorophyll α. Int J Syst Evol Microbiol 2005;55:2377–2383 [CrossRef][PubMed]
    [Google Scholar]
  25. Yoon JH, Kang SJ, Lee SY, Oh TK. Phaeobacter daeponensis sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2007;57:856–861 [CrossRef][PubMed]
    [Google Scholar]
  26. Park S, Park DS, Bae KS, Yoon JH. Phaeobacter aquaemixtae sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 2014;64:1378–1383 [CrossRef][PubMed]
    [Google Scholar]
  27. Vandecandelaere I, Segaert E, Mollica A, Faimali M, Vandamme P. Phaeobacter caeruleus sp. nov., a blue-coloured, colony-forming bacterium isolated from a marine electroactive biofilm. Int J Syst Evol Microbiol 2009;59:1209–1214 [CrossRef][PubMed]
    [Google Scholar]
  28. Martens T, Heidorn T, Pukall R, Simon M, Tindall BJ et al. Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int J Syst Evol Microbiol 2006;56:1293–1304 [CrossRef][PubMed]
    [Google Scholar]
  29. Weon HY, Kim BY, Yoo SH, Kim JS, Kwon SW et al. Loktanella koreensis sp. nov., isolated from sea sand in Korea. Int J Syst Evol Microbiol 2006;56:2199–2202 [CrossRef][PubMed]
    [Google Scholar]
  30. Yoon JH, Kang SJ, Lee SY, Oh TK. Loktanella maricola sp. nov., isolated from seawater of the East Sea in Korea. Int J Syst Evol Microbiol 2007;57:1799–1802 [CrossRef][PubMed]
    [Google Scholar]
  31. Tanaka N, Romanenko LA, Kurilenko VV, Svetashev VI, Kalinovskaya NI et al. Loktanella maritima sp. nov. isolated from shallow marine sediments. Int J Syst Evol Microbiol 2014;64:2370–2375 [CrossRef][PubMed]
    [Google Scholar]
  32. Ivanova EP, Zhukova NV, Lysenko AM, Gorshkova NM, Sergeev AF et al. Loktanella agnita sp. nov. and Loktanella rosea sp. nov., from the north-west Pacific Ocean. Int J Syst Evol Microbiol 2005;55:2203–2207 [CrossRef][PubMed]
    [Google Scholar]
  33. Hameed A, Shahina M, Lin SY, Lai WA, Hsu YH et al. Shimia biformata sp. nov., isolated from surface seawater, and emended description of the genus Shimia Choi and Cho 2006. Int J Syst Evol Microbiol 2013;63:4533–4539 [CrossRef][PubMed]
    [Google Scholar]
  34. Hyun DW, Kim MS, Shin NR, Kim JY, Kim PS et al. Shimia haliotis sp. nov., a bacterium isolated from the gut of an abalone, Haliotis discus hannai. Int J Syst Evol Microbiol 2013;63:4248–4253 [CrossRef][PubMed]
    [Google Scholar]
  35. Chen MH, Sheu SY, Chen CA, Wang JT, Chen WM. Shimia isoporae sp. nov., isolated from the reef-building coral Isopora palifera. Int J Syst Evol Microbiol 2011;61:823–827 [CrossRef][PubMed]
    [Google Scholar]
  36. Choi DH, Cho BC. Shimia marina gen. nov., sp. nov., a novel bacterium of the Roseobacter clade isolated from biofilm in a coastal fish farm. Int J Syst Evol Microbiol 2006;56:1869–1873 [CrossRef][PubMed]
    [Google Scholar]
  37. Nogi Y, Mori K, Uchida H, Hatada Y. Shimia sagamensis sp. nov., a marine bacterium isolated from cold-seep sediment. Int J Syst Evol Microbiol 2015;65:2786–2790 [CrossRef][PubMed]
    [Google Scholar]
  38. Yoon JH, Kang SJ, Oh TK. Roseovarius aestuarii sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2008;58:1198–1202 [CrossRef][PubMed]
    [Google Scholar]
  39. Kim YO, Park S, Nam BH, Park JM, Kim DG et al. Roseovarius scapharcae sp. nov., isolated from ark shell Scapharca broughtonii. Int J Syst Evol Microbiol 2015;65:4695–4700 [CrossRef][PubMed]
    [Google Scholar]
  40. Romanenko LA, Tanaka N, Frolova GM, Svetashev VI, Mikhailov VV. Litoreibacter albidus gen. nov., sp. nov. and Litoreibacter janthinus sp. nov., members of the class Alphaproteobacteria isolated from the seashore. Int J Syst Evol Microbiol 2011;61:148–154 [CrossRef][PubMed]
    [Google Scholar]
  41. Kim YO, Park S, Nam BH, Jung YT, Kim DG et al. Litoreibacter halocynthiae sp. nov., isolated from the sea squirt Halocynthia roretzi. Int J Syst Evol Microbiol 2013;63:3364–3368 [CrossRef][PubMed]
    [Google Scholar]
  42. Kim YO, Park S, Nam BH, Kang SJ, Hur YB et al. Description of Litoreibacter meonggei sp. nov., isolated from the sea squirt Halocynthia roretzi, reclassification of Thalassobacter arenae as Litoreibacter arenae comb. nov. and emended description of the genus Litoreibacter Romanenko et al. 2011. Int J Syst Evol Microbiol 2012;62:1825–1831 [CrossRef][PubMed]
    [Google Scholar]
  43. Kwak MJ, Lee JS, Lee KC, Kim KK, Eom MK et al. Sulfitobacter geojensis sp. nov., Sulfitobacter noctilucae sp. nov., and Sulfitobacter noctilucicola sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 2014;64:3760–3767 [CrossRef][PubMed]
    [Google Scholar]
  44. Yoon JH, Kang SJ, Oh TK. Sulfitobacter marinus sp. nov., isolated from seawater of the East Sea in Korea. Int J Syst Evol Microbiol 2007;57:302–305 [CrossRef][PubMed]
    [Google Scholar]
  45. Cho JC, Giovannoni SJ. Oceanicola granulosus gen. nov., sp. nov. and Oceanicola batsensis sp. nov., poly-β-hydroxybutyrate-producing marine bacteria in the order 'Rhodobacterales'. Int J Syst Evol Microbiol 2004;54:1129–1136 [CrossRef][PubMed]
    [Google Scholar]
  46. Montero-Calasanz MC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. Int J Syst Evol Microbiol 2013;63:4386–4395 [CrossRef][PubMed]
    [Google Scholar]
  47. Schaefer JK, Goodwin KD, Mcdonald IR, Murrell JC, Oremland RS. Leisingera methylohalidivorans gen. nov., sp. nov., a marine methylotroph that grows on methyl bromide. Int J Syst Evol Microbiol 2002;52:851–859 [CrossRef][PubMed]
    [Google Scholar]
  48. Schumann P. Peptidoglycan Structure. In Rainey F, Oren A. (editors) Taxonomy of Prokaryotes, Methods in Microbiologyvol. 38 2011; pp.101–129[CrossRef]
    [Google Scholar]
  49. Vandecandelaere I, Segaert E, Mollica A, Faimali M, Vandamme P. Leisingera aquimarina sp. nov., isolated from a marine electroactive biofilm, and emended descriptions of Leisingera methylohalidivorans Schaefer et al. 2002, Phaeobacter daeponensis Yoon et al. 2007 and Phaeobacter inhibens Martens et al. 2006. Int J Syst Evol Microbiol 2008;58:2788–2793 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001935
Loading
/content/journal/ijsem/10.1099/ijsem.0.001935
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error