1887

Abstract

Two slow-growing strains, AMBPC1010 and AMBPC1011, were isolated from nodules of Cajanus cajan in the Dominican Republic. 16S rRNA gene analysis placed these strains within the genus Bradyrhizobium , being phylogenetically equidistant to several species of this genus. Analysis of the recA and atpD genes showed that the strains isolated belong to a cluster containing the strains Bradyrhizobium ottawaense OO99, ‘ Bradyrhizobium americanum' CMVU44 and Bradyrhizobium daqingense CCBAU 15774, and presented similarity values lower than 96 % for both genes with respect to the strains nodulating C. cajan. DNA–DNA hybridization analysis showed averages of 36, 40 and 39 % relatedness with respect to the representative strains of Bradyrhizobium ottawaense , ‘ Bradyrhizobium americanum' and Bradyrhizobium daqingense , respectively. Phenotypic characteristics also differed from those of the most closely related species of the genus Bradyrhizobium . Therefore, based on the data obtained in this study, we propose to classify the strains AMBPC1010 (=LMG 29967=CECT 9227) and AMBPC1011 into a novel species named Bradyrhizobium cajani sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001932
2017-07-03
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2236.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001932&mimeType=html&fmt=ahah

References

  1. Kuykendall LD. Genus I. Bradyrhizobium Jordan 1982, 137vp. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, The Alpha-, Beta-, Delta- and Epsilonproteobacteria, The Proteobacteria, Part C , 2nd ed.vol 2 2005; New York: Springer; pp. 438– 443
    [Google Scholar]
  2. Delamuta JR, Ribeiro RA, Ormeño-Orrillo E, Parma MM, Melo IS et al. Bradyrhizobium tropiciagri sp. nov. and Bradyrhizobium embrapense sp. nov., nitrogen-fixing symbionts of tropical forage legumes. Int J Syst Evol Microbiol 2015; 65: 4424– 4433 [CrossRef] [PubMed]
    [Google Scholar]
  3. Helene LC, Delamuta JR, Ribeiro RA, Ormeño-Orrillo E, Rogel MA et al. Bradyrhizobium viridifuturi sp. nov., encompassing nitrogen-fixing symbionts of legumes used for green manure and environmental services. Int J Syst Evol Microbiol 2015; 65: 4441– 4448 [CrossRef] [PubMed]
    [Google Scholar]
  4. Delamuta JR, Ribeiro RA, Araújo JL, Rouws LF, Zilli et al. Bradyrhizobium stylosanthis sp. nov., comprising nitrogen-fixing symbionts isolated from nodules of the tropical forage legume Stylosanthes spp. Int J Syst Evol Microbiol 2016; 66: 3078– 3087 [CrossRef] [PubMed]
    [Google Scholar]
  5. Ramírez-Bahena MH, Flores-Félix JD, Chahboune R, Toro M, Velázquez E et al. Bradyrhizobium centrosemae (symbiovar centrosemae) sp. nov., Bradyrhizobium americanum (symbiovar phaseolarum) sp. nov. and a new symbiovar (tropici) of Bradyrhizobium viridifuturi establish symbiosis with Centrosema species native to America. Syst Appl Microbiol 2016; 39: 378– 383 [CrossRef] [PubMed]
    [Google Scholar]
  6. Appunu C, Sasirekha N, Prabavathy VR, Nair S. A significant proportion of indigenous rhizobia from India associated with soybean (Glycine max L.) distinctly belong to Bradyrhizobium and Ensifer genera. Biol Fertil Soils 2009; 46: 57– 63 [CrossRef]
    [Google Scholar]
  7. Ramsubhag A, Umaharan P, Donawa A. Partial 16S rRNA gene sequence diversity and numerical taxonomy of slow growing pigeonpea (Cajanus cajan L Millsp) nodulating rhizobia. FEMS Microbiol Lett 2002; 216: 139– 144 [CrossRef] [PubMed]
    [Google Scholar]
  8. Araujo J, Díaz-Alcántara C-A, Velázquez E, Urbano B, González-Andrés F. Bradyrhizobium yuanmingense related strains form nitrogen-fixing symbiosis with Cajanus cajan L. in Dominican Republic and are efficient biofertilizers to replace N fertilization. Sci Hortic 2015; 192: 421– 428 [CrossRef]
    [Google Scholar]
  9. Vincent JM. The cultivation, isolation and maintenance of rhizobia. In Vincent JM. (editor) A Manual for the Practical Study of Root-Nodule Oxford: Blackwell Scientific Publications; 1970; pp. 1– 13
    [Google Scholar]
  10. Rivas R, Peix A, Mateos PF, Trujillo ME, Martínez-Molina E et al. Biodiversity of populations of phosphate solubilizing rhizobia that nodulates chickpea in different Spanish soils. Plant Soil 2006; 287: 23– 33 [CrossRef]
    [Google Scholar]
  11. Rivas R, García-Fraile P, Mateos PF, Martínez-Molina E, Velázquez E. Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera. Lett Appl Microbiol 2007; 44: 181– 187 [CrossRef] [PubMed]
    [Google Scholar]
  12. Vinuesa P, Rojas-Jiménez K, Contreras-Moreira B, Mahna SK, Prasad BN et al. Multilocus sequence analysis for assessment of the biogeography and evolutionary genetics of four Bradyrhizobium species that nodulate soybeans on the Asiatic continent. Appl Environ Microbiol 2008; 74: 6987– 6996 [CrossRef] [PubMed]
    [Google Scholar]
  13. Velázquez E, Valverde A, Rivas R, Gomis V, Peix A et al. Strains nodulating Lupinus albus on different continents belong to several new chromosomal and symbiotic lineages within Bradyrhizobium. Antonie van Leeuwenhoek 2010; 97: 363– 376 [CrossRef] [PubMed]
    [Google Scholar]
  14. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403– 410 [CrossRef] [PubMed]
    [Google Scholar]
  15. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876– 4882 [CrossRef] [PubMed]
    [Google Scholar]
  16. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  18. Rogers JS, Swofford DL. A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. Syst Biol 1998; 47: 77– 89 [PubMed] [CrossRef]
    [Google Scholar]
  19. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731– 2739 [CrossRef] [PubMed]
    [Google Scholar]
  20. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-Deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
    [Google Scholar]
  21. Willems A, Doignon-Bourcier F, Goris J, Coopman R, de Lajudie P et al. DNA-DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 2001; 51: 1315– 1322 [CrossRef] [PubMed]
    [Google Scholar]
  22. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  23. Chun J, Goodfellow M. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 1995; 45: 240– 245 [CrossRef] [PubMed]
    [Google Scholar]
  24. Mandel M, Mamur J. Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 1968; 12B: 195– 206 [CrossRef]
    [Google Scholar]
  25. Ramírez-Bahena MH, Peix A, Rivas R, Camacho M, Rodríguez-Navarro DN et al. Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus. Int J Syst Evol Microbiol 2009; 59: 1929– 1934 [CrossRef] [PubMed]
    [Google Scholar]
  26. Wang JY, Wang R, Zhang YM, Liu HC, Chen WF et al. Bradyrhizobium daqingense sp. nov., isolated from soybean nodules. Int J Syst Evol Microbiol 2013; 63: 616– 624 [CrossRef] [PubMed]
    [Google Scholar]
  27. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids,, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  28. Peix A, Ramírez-Bahena MH, Flores-Félix JD, Alonso de La Vega P, Rivas R et al. Revision of the taxonomic status of the species Rhizobium lupini and reclassification as Brady rhizobium lupini comb. nov. Int J Syst Evol Microbiol 2015; 65: 1213– 1219 [CrossRef] [PubMed]
    [Google Scholar]
  29. Chahboune R, Carro L, Peix A, Barrijal S, Velázquez E et al. Bradyrhizobium cytisi sp. nov., isolated from effective nodules of Cytisus villosus. Int J Syst Evol Microbiol 2011; 61: 2922– 2927 [CrossRef] [PubMed]
    [Google Scholar]
  30. Guerrouj K, Ruíz-Díez B, Chahboune R, Ramírez-Bahena MH, Abdelmoumen H et al. Definition of a novel symbiovar (sv. retamae) within Bradyrhizobium retamae sp. nov., nodulating Retama sphaerocarpa and Retama monosperma. Syst Appl Microbiol 2013; 36: 218– 223 [CrossRef] [PubMed]
    [Google Scholar]
  31. Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ. Bacterial associations with legumes. CRC Crit Rev Plant Sci 2015; 34: 17– 42 [CrossRef]
    [Google Scholar]
  32. Wang R, Chang YL, Zheng WT, Zhang D, Zhang XX et al. Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. Syst Appl Microbiol 2013; 36: 101– 105 [CrossRef] [PubMed]
    [Google Scholar]
  33. Lasse Grönemeyer J, Hurek T, Reinhold-Hurek B. Bradyrhizobium kavangense sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of traditional Namibian pulses. Int J Syst Evol Microbiol 2015; 65: 4886– 4894 [CrossRef] [PubMed]
    [Google Scholar]
  34. Grönemeyer JL, Hurek T, Bünger W, Reinhold-Hurek B. Bradyrhizobium vignae sp. nov., a nitrogen-fixing symbiont isolated from effective nodules of Vigna and Arachis. Int J Syst Evol Microbiol 2016; 66: 62– 69 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001932
Loading
/content/journal/ijsem/10.1099/ijsem.0.001932
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error