1887

Abstract

The genus Thiobacillus comprises four species with validly published names, of which Thiobacillus aquaesulis DSM 4255 (=ATCC 43788) is the only species that can grow heterotrophically or mixotrophically – the rest being obligate autotrophs – and has a significant metabolic difference in not producing tetrathionate during the oxidation of thiosulfate during autotrophic growth. On the basis of this and differential chemotaxonomic properties and a 16S rRNA gene sequence similarity of 93.4 % to the type species Thiobacillus thioparus DSM 505, we propose that it is moved to a novel genus, Annwoodia gen. nov., for which the type species is Annwoodia aquaesulis gen. nov., comb. nov. We confirm that the position of the genus Thiobacillus in the Betaproteobacteria falls within the Nitrosomonadales rather than the Hydrogenophilales as previously proposed. Within the Nitrosomonadales we propose the circumscription of genera to form the Thiobacilliaceae fam. nov. and the Sterolibacteriaceae fam. nov. We propose the merging of the family Methylophilaceae into the Nitrosomonadales , and that the Sulfuricellaceae be merged into the Gallionellaceae , leaving the orders Methylophilales and Sulfuricellales defunct. In the Rhodocyclales we propose the Azonexaceae fam. nov. and the Zoogloeaceae fam. nov. We also reject the Hydrogenophilales from the Betaproteobacteria on the basis of a very low 16S rRNA gene sequence similarity with the class-proper as well as physiological properties, forming the Hydrogenophilalia class. nov. in the ‘ Proteobacteria ’. We provide emended descriptions of Thiobacillus , Hydrogenophilales , Hydrogenophilaceae , Nitrosomonadales , Gallionellaceae , Rhodocyclaceae and the Betaproteobacteria .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001927
2017-06-05
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1191.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001927&mimeType=html&fmt=ahah

References

  1. Beijerinck MW. Phénomènes de réduction produits par les microbes. Arch Néerland Sci Exact Nat 1904;9:131–157
    [Google Scholar]
  2. Garrity GM, Bell JA, Lilburn T. Order II. Hydrogenophilales ord. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed.vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) New York: Springer; 2005; p.763
    [Google Scholar]
  3. Boden R, Cleland D, Green PN, Katayama Y, Uchino Y et al. Phylogenetic assessment of culture collection strains of Thiobacillus thioparus, and definitive 16S rRNA gene sequences for T. thioparus, T. denitrificans, and Halothiobacillus neapolitanus. Arch Microbiol 2012;194:187–195 [CrossRef][PubMed]
    [Google Scholar]
  4. Starkey RL. Isolation of some bacteria which oxidize thiosulfate. Soil Sci 1935;39:197–220 [CrossRef]
    [Google Scholar]
  5. Kellermann C, Griebler C. Thiobacillus thiophilus sp. nov., a chemolithoautotrophic, thiosulfate-oxidizing bacterium isolated from contaminated aquifer sediments. Int J Syst Evol Microbiol 2009;59:583–588 [CrossRef][PubMed]
    [Google Scholar]
  6. Kelly DP, Harrison. Genus Thiobacillus Beijerinck 1904b, 597AL. In Staley JT, Bryant MP, Pfennig N, Holt JG. (editors) Bergey's Manual of Systematic Bacteriology, 1st ed.vol. 3 Baltimore: The Williams & Wilkins Co; 1989; pp.1842–1858
    [Google Scholar]
  7. Hutchinson M, Johnstone KI, White D. Taxonomy of anaerobic thiobacilli. J Gen Microbiol 1967;47:17–23 [CrossRef][PubMed]
    [Google Scholar]
  8. Validation List No. 52. Int J Syst Bacteriol 1995;45:418–419[CrossRef]
    [Google Scholar]
  9. Wood AP, Kelly DP. Isolation and physiological characterisation of Thiobacillus aquaesulis sp. nov., a novel facultatively autotrophic moderate thermophile. Arch Microbiol 1988;149:339–343 [CrossRef]
    [Google Scholar]
  10. Beller HR, Chain PS, Letain TE, Chakicherla A, Larimer FW et al. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. J Bacteriol 2006;188:1473–1488 [CrossRef][PubMed]
    [Google Scholar]
  11. Hutt LP, Huntemann M, Clum A, Pillay M, Palaniappan K et al. Permanent draft genome of Thiobacillus thioparus DSM 505(T), an obligately chemolithoautotrophic member of the Betaproteobacteria. Stand Genomic Sci 2017;12:10 [CrossRef][PubMed]
    [Google Scholar]
  12. Smith AJ, London J, Stanier RY. Biochemical basis of obligate autotrophy in blue-green algae and Thiobacilli. J Bacteriol 1967;94:972–983[PubMed]
    [Google Scholar]
  13. Wood AP, Aurikko JP, Kelly DP. A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy?. FEMS Microbiol Rev 2004;28:335–352 [CrossRef][PubMed]
    [Google Scholar]
  14. Boden R, Hutt LP, Huntemann M, Clum A, Pillay M et al. Permanent draft genome of Thermithiobaclillus tepidarius DSM 3134T, a moderately thermophilic, obligately chemolithoautotrophic member of the Acidithiobacillia. Stand Genomic Sci 2016;11:74 [CrossRef][PubMed]
    [Google Scholar]
  15. Roy AB, Trudinger PA. The Biochemistry of Inorganic Compounds of Sulphur Cambridge: Cambridge University Press; 1970
    [Google Scholar]
  16. Katayama-Fujimura Y, Tsuzaki N, Hirata A, Kuraishi H. Polyhedral inclusion bodies (carboxysomes) in Thiobacillus species with reference to the taxonomy of the genus Thiobacillus. J Gen Appl Microbiol 1984;30:211–222 [CrossRef]
    [Google Scholar]
  17. Wood AP, Kelly DP. Physiological characteristics of a new thermophilic obligately chemolithotrophic Thiobacillus species, Thiobacillus tepidarius. Int J Syst Bacteriol 1985;35:434–437 [CrossRef]
    [Google Scholar]
  18. Kelly DP, Wood AP. Microbes of the sulfur cycle. In Burlage RS, Atlas R, Stahl D, Geesey G, Sayler G. (editors) Techniques in Microbial Ecology London: Oxford University Press; 1998; pp.31–57
    [Google Scholar]
  19. Skidmore DW. Purification of carbon disulphide for use as a solvent in gas chromatography. Ann Occup Hyg 1979;22:181–182[PubMed]
    [Google Scholar]
  20. Boden R, Kelly DP, Murrell JC, Schäfer H. Oxidation of dimethylsulfide to tetrathionate by Methylophaga thiooxidans sp. nov.: a new link in the sulfur cycle. Environ Microbiol 2010;12:2688–2599 [CrossRef]
    [Google Scholar]
  21. Fredericq E, Oth A, Fontaine F. The ultraviolet spectrum of deoxyribonucleic acids and their constituents. J Mol Biol 1961;3:11–17 [CrossRef][PubMed]
    [Google Scholar]
  22. Boden R, Ferriera S, Johnson J, Kelly DP, Murrell JC et al. Draft genome sequence of the chemolithoheterotrophic, halophilic methylotroph Methylophaga thiooxydans DMS010T. J Bacteriol 2011;193:3154–3155 [CrossRef][PubMed]
    [Google Scholar]
  23. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  24. Garrity GM, Bell JA, Lilburn T. Class II. Betaproteobacteria class. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed.vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) New York: Springer; 2005; p.575[CrossRef]
    [Google Scholar]
  25. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  26. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10:512–526[PubMed]
    [Google Scholar]
  27. Nakai R, Nishijima M, Tazato N, Handa Y, Karray F et al. Oligoflexus tunisiensis gen. nov., sp. nov., a Gram-negative, aerobic, filamentous bacterium of a novel proteobacterial lineage, and description of Oligoflexaceae fam. nov., Oligoflexales ord. nov. and Oligoflexia classis nov. Int J Syst Evol Microbiol 2014;64:3353–3359 [CrossRef][PubMed]
    [Google Scholar]
  28. Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C et al. Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology 2012;158:1005–1015 [CrossRef][PubMed]
    [Google Scholar]
  29. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992;8:275–282 [CrossRef][PubMed]
    [Google Scholar]
  30. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014;12:635–645 [CrossRef][PubMed]
    [Google Scholar]
  31. Agate AD, Vishniac W. Characterization of Thiobacillus species by gas-liquid chromatography of cellular fatty acids. Arch Mikrobiol 1973;89:257–267 [CrossRef][PubMed]
    [Google Scholar]
  32. Fullarton JG, Wood AP, Sargent JR. Fatty acid compositions of lipids from sulphur-oxidizing and methylotrophic bacteria from thyasirid and lucinid bivalves. J Mar Biol Assoc UK 1995;75:445–454[CrossRef]
    [Google Scholar]
  33. Kelly DP, Wood AP, Stackebrandt E. Genus II. Thiobacillus Beijerinck 1904b 597AL. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey's Manual of Systematic Bacteriologyvol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) New York: Springer; 2005; pp.764–771[CrossRef]
    [Google Scholar]
  34. Watanabe T, Kojima H, Fukui M. Sulfuriferula multivorans gen. nov., sp. nov., isolated from a freshwater lake, reclassification of 'Thiobacillus plumbophilus' as Sulfuriferula plumbophilus sp. nov., and description of Sulfuricellaceae fam. nov. and Sulfuricellales ord. nov. Int J Syst Evol Microbiol 2015;65:1504–1508 [CrossRef][PubMed]
    [Google Scholar]
  35. Henrici AT, Johnson D. Stalked bacteria, a new order of schizomycetes.. J Bacteriol 1935;29:3–4
    [Google Scholar]
  36. Garrity GM, Bell JA, Lilburn T. Order VI. Rhodocyclales ord. nov. In Garrity GM. (editor) Bergey's Manual of Systematic Bacteriology, 2nd ed.vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) New York: Springer; 2005; p.886
    [Google Scholar]
  37. Poddar A, Lepcha RT, Das SK. Taxonomic study of the genus Tepidiphilus: transfer of Petrobacter succinatimandens to the genus Tepidiphilus as Tepidiphilus succinatimandens comb. nov., emended description of the genus Tepidiphilus and description of Tepidiphilus thermophilus sp. nov., isolated from a terrestrial hot spring. Int J Syst Evol Microbiol 2014;64:228–235 [CrossRef][PubMed]
    [Google Scholar]
  38. Suzuki KI, Saito K, Kawaguchi A, Okuda S, Komagata K. Occurrence of ω-cyclohexyl fatty acids in Curtobacterium pusillum strains. J Gen Appl Microbiol 1981;27:261–266 [CrossRef]
    [Google Scholar]
  39. Kusano K, Yamada H, Niwa M, Yamasato K. Propionibacterium cyclohexanicum sp. nov., a new acid-tolerant omega-cyclohexyl fatty acid-containing Propionibacterium isolated from spoiled orange juice. Int J Syst Bacteriol 1997;47:825–831 [CrossRef][PubMed]
    [Google Scholar]
  40. Da Costa MS, Albuquerque L, Nobre MF, Wait R. The identification of fatty acids in bacteria. In Rainey F, Oren A. (editors) Taxonomy of Prokaryotes, Methods in Microbiologyvol. 38 London: Elsevier; 2011; pp.183–196[CrossRef]
    [Google Scholar]
  41. Garrity GM, Bell JA, Lilburn T. Order VI. Nitrosomonadales ord. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed.vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) New York: Springer; 2005; p.863
    [Google Scholar]
  42. Anthony C. The Biochemistry of Methylotrophs London: Academic Press; 1982; pp.42–59
    [Google Scholar]
  43. Hedrich S, Johnson DB. Aerobic and anaerobic oxidation of hydrogen by acidophilic bacteria. FEMS Microbiol Lett 2013;349:40–45
    [Google Scholar]
  44. Fournier PE, Suhre K, Fournous G, Raoult D. Estimation of prokaryote genomic DNA G+C content by sequencing universally conserved genes. Int J Syst Evol Microbiol 2006;56:1025–1029 [CrossRef][PubMed]
    [Google Scholar]
  45. Validation List No. 107. Int J Syst Evol Microbiol 2006;56:1–6[CrossRef]
    [Google Scholar]
  46. Garrity GM, Bell JA, Lilburn T. Family I. Hydrogenophilaceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed.vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) New York: Springer; 2005; p.763
    [Google Scholar]
  47. Hayashi NR, Ishida T, Yokota A, Kodama T, Igarashi Y. Hydrogenophilus thermoluteolus gen. nov., sp. nov., a thermophilic, facultatively chemolithoautotrophic, hydrogen-oxidizing bacterium. Int J Syst Bacteriol 1999;49:783–786 [CrossRef][PubMed]
    [Google Scholar]
  48. Ehrenburg CG. Die Infusionsthierchen Als Vollkommene Organismen Leipzig, L. Voss; 1838
    [Google Scholar]
  49. Tarlera S, Denner EB. Sterolibacterium denitrificans gen. nov., sp. nov., a novel cholesterol-oxidizing, denitrifying member of the β-Proteobacteria. Int J Syst Evol Microbiol 2003;53:1085–1091 [CrossRef][PubMed]
    [Google Scholar]
  50. Pfennig N. Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin 720 B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 1978;28:283–288 [CrossRef]
    [Google Scholar]
  51. Itzigsohn H. Entwicklungsvorgänge von Zoogloea, Oscillaria, Synedra, Staurastrum, Spirotaenia und Chroolepus. In: Sitzungs-Berichte Der Gesellschaft Naturforschender Freunde Zu Berlin 1868; pp.30–31
    [Google Scholar]
  52. Reinhold-Hurek B, Hurek T. Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov. Int J Syst Evol Microbiol 2000;50:649–659 [CrossRef][PubMed]
    [Google Scholar]
  53. Garrity GM, Bell JA, Lilburn T. Order I. Burkholderiales ord. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed.vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) New York: Springer; 2005; pp.575–762[CrossRef]
    [Google Scholar]
  54. Garrity GM, Bell JA, Lilburn T. Order IV. Neisseriales ord. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed.vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) New York: Springer; 2005; pp.774–863
    [Google Scholar]
  55. Odintsova EV, Jannasch HW, Mamone JA, Langworthy TA. Thermothrix azorensis sp. nov., an obligately chemolithoautotrophic, sulfur-oxidizing, thermophilic bacterium. Int J Syst Bacteriol 1996;46:422–428 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001927
Loading
/content/journal/ijsem/10.1099/ijsem.0.001927
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error