sp. nov., a novel psychrotolerant bacterium isolated from oil-contaminated soil Free

Abstract

During a study of psychrophilic hydrocarbon-degrading bacteria, two yellow, Gram-staining-negative, non-motile, and rod shaped bacteria, designated R-10-9 and K-4-2 were isolated from oil-contaminated soil from Ulaanbaatar, Mongolia. Both strains were able to grow at 0–32 °C, pH 5.0–9.5, and 0–1 % (w/v) NaCl concentration. These strains were taxonomically characterized by a polyphasic approach. On the basis of the results of 16S rRNA gene sequence analysis, R-10-9 and K-4-2 belong to the genus and are closely related to 631-08 (97.80 and 98.09 % sequence similarity, respectively). The pairwise sequence similarity between R-10-9 and K-4-2 was observed to be 99.72 %. In both strains, the predominant respiratory quinone was menaquinone-6; the major polar lipid was phosphatidylethanolamine; and the major fatty acids were summed feature 3 (Cω7 and/or Cω6), iso-C, C 3-OH, antesio-C, C, iso-C 3-OH, and iso-C 3-OH. The genomic DNA G+C contents of R-10-9 and K-4-2 were 35.9 and 35.4 mol%, respectively. The DNA–DNA relatedness between R-10-9 and K-4-2 was higher than 70 % but relatedness values with closely related reference strains were less than 35 %. The morphological, physiological, chemotaxonomic, and phylogenetic analyses clearly distinguished R-10-9 from its closest phylogenetic neighbours. Thus, R-10-9 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is R-10-9 (=KEMB 9005-447=KACC 18997=JCM 31673), and strain K-4-2 as an additional strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001925
2017-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2211.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001925&mimeType=html&fmt=ahah

References

  1. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM et al. Genus II. Flavobacterium gen. nov. In: Bergey’s Manual of Determinative Bacteriology Baltimore: Williams & Wilkins; 1923 pp. 97–117
    [Google Scholar]
  2. Bernardet JF, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 1996; 46:128–148 [View Article]
    [Google Scholar]
  3. Bernardet JF, Bowman JP. The genus Flavobacterium . In Whitman WB, Parte AC. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 4 New York, Dordrecht, Heidelberg, London: Springer; 2010 pp. 112–155
    [Google Scholar]
  4. Aslam Z, Im WT, Kim MK, Lee ST. Flavobacterium granuli sp. nov., isolated from granules used in a wastewater treatment plant. Int J Syst Evol Microbiol 2005; 55:747–751 [View Article][PubMed]
    [Google Scholar]
  5. Zamora L, Fernández-Garayzábal JF, Svensson-Stadler LA, Palacios MA, Domínguez L et al. Flavobacterium oncorhynchi sp. nov., a new species isolated from rainbow trout (Oncorhynchus mykiss). Syst Appl Microbiol 2012; 35:86–91 [View Article][PubMed]
    [Google Scholar]
  6. Ali Z, Cousin S, Frühling A, Brambilla E, Schumann P et al. Flavobacterium rivuli sp. nov., Flavobacterium subsaxonicum sp. nov., Flavobacterium swingsii sp. nov. and Flavobacterium reichenbachii sp. nov., isolated from a hard water rivulet. Int J Syst Evol Microbiol 2009; 59:2610–2617 [View Article][PubMed]
    [Google Scholar]
  7. Kuo I, Saw J, Kapan DD, Christensen S, Kaneshiro KY et al. Flavobacterium akiainvivens sp. nov., from decaying wood of Wikstroemia oahuensis, Hawai'i, and emended description of the genus Flavobacterium . Int J Syst Evol Microbiol 2013; 63:3280–3286 [View Article][PubMed]
    [Google Scholar]
  8. Miyashita M, Fujimura S, Nakagawa Y, Nishizawa M, Tomizuka N et al. Flavobacterium algicola sp. nov., isolated from marine algae. Int J Syst Evol Microbiol 2010; 60:344–348 [View Article][PubMed]
    [Google Scholar]
  9. Ao L, Zeng XC, Nie Y, Mu Y, Zhou L et al. Flavobacterium arsenatis sp. nov., a novel arsenic-resistant bacterium from high-arsenic sediment. Int J Syst Evol Microbiol 2014; 64:3369–3374 [View Article][PubMed]
    [Google Scholar]
  10. Kim JJ, Jin HM, Lee HJ, Jeon CO, Kanaya E et al. Flavobacterium banpakuense sp. nov., isolated from leaf-and-branch compost. Int J Syst Evol Microbiol 2011; 61:1595–1600 [View Article][PubMed]
    [Google Scholar]
  11. Fu Y, Tang X, Lai Q, Zhang C, Zhong H et al. Flavobacterium beibuense sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2011; 61:205–209 [View Article][PubMed]
    [Google Scholar]
  12. Sun JQ, Xu L, Liu M, Wang XY, Wu XL. Flavobacterium suaedae sp. nov., an endophyte isolated from the root of Suaeda corniculata . Int J Syst Evol Microbiol 2016; 66:1943–1949 [View Article][PubMed]
    [Google Scholar]
  13. Zhang Y, Jiang F, Chang X, Qiu X, Ren L et al. Flavobacterium collinsense sp. nov., isolated from a till sample of an Antarctic glacier. Int J Syst Evol Microbiol 2016; 66:172–177 [View Article][PubMed]
    [Google Scholar]
  14. van Trappen S, Vandecandelaere I, Mergaert J, Swings J. Flavobacterium fryxellicola sp. nov. and Flavobacterium psychrolimnae sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 2005; 55:769–772 [View Article][PubMed]
    [Google Scholar]
  15. Zhu L, Liu Q, Liu H, Zhang J, Dong X et al. Flavobacterium noncentrifugens sp. nov., a psychrotolerant bacterium isolated from glacier meltwater. Int J Syst Evol Microbiol 2013; 63:2032–2037 [View Article][PubMed]
    [Google Scholar]
  16. Zhang DC, Wang HX, Liu HC, Dong XZ, Zhou PJ. Flavobacterium glaciei sp. nov., a novel psychrophilic bacterium isolated from the China No.1 glacier. Int J Syst Evol Microbiol 2006; 56:2921–2925 [View Article][PubMed]
    [Google Scholar]
  17. Yi H, Oh HM, Lee JH, Kim SJ, Chun J. Flavobacterium antarcticum sp. nov., a novel psychrotolerant bacterium isolated from the Antarctic. Int J Syst Evol Microbiol 2005; 55:637–641 [View Article][PubMed]
    [Google Scholar]
  18. Chaudhary DK, Kim J. Novosphingobium naphthae sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol 2016; 66:3170–3176 [View Article][PubMed]
    [Google Scholar]
  19. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–218 [View Article]
    [Google Scholar]
  20. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008; 74:2461–2470 [View Article][PubMed]
    [Google Scholar]
  21. Yoon SH, Sm H, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2017: in press
    [Google Scholar]
  22. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  23. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  25. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  27. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  28. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  30. Doetsch RN. Determinative methods of light microscopy. In Gerhardt P. (editor) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981 pp. 21–33
    [Google Scholar]
  31. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995; 61:3756–3758[PubMed]
    [Google Scholar]
  32. Chaudhary DK, Kim J. Arvibacter flaviflagrans gen. nov., sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2016; 66:4347–4354 [View Article][PubMed]
    [Google Scholar]
  33. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, D. C: American Society for Microbiology; 2007 pp. 309–329
    [Google Scholar]
  34. Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA et al. Novosphingobium arabidopsis sp. nov., a DDT-resistant bacterium isolated from the rhizosphere of Arabidopsis thaliana . Int J Syst Evol Microbiol 2014; 64:594–598 [View Article][PubMed]
    [Google Scholar]
  35. Hemraj V, Diksha S, Avneet G. A review on commonly used biochemical test for bacteria. Innovare J Life Sci 2013; 1:1–7
    [Google Scholar]
  36. Chaudhary DK, Kim J. Sphingomonas naphthae sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2016; 66:4621–4627 [View Article][PubMed]
    [Google Scholar]
  37. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, D. C: ASM Press; 2007 pp. 330–393
    [Google Scholar]
  38. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC, USA: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  39. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  40. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  41. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354[PubMed]
    [Google Scholar]
  42. Komagata K, Suzuki K. Lipids and cell wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–203 [CrossRef]
    [Google Scholar]
  43. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  44. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  45. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  46. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31:241–250 [View Article][PubMed]
    [Google Scholar]
  47. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  48. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  49. Strohl WR, Tait LR. Cytophaga aquatilis sp. nov., a facultative anaerobe isolated from the gills of freshwater fish. Int J Syst Bacteriol 1978; 28:293–303 [View Article]
    [Google Scholar]
  50. Zamora L, Fernã¡ndez-Garayzã¡bal JF, Sã¡nchez-Porro C, Palacios MA, Moore ERB et al. Flavobacterium plurextorum sp. nov. isolated from farmed rainbow trout (Oncorhynchus mykiss) . PLoS One 2013; 8:1–7 [View Article]
    [Google Scholar]
  51. Lim CS, Oh YS, Lee JK, Park AR, Yoo JS et al. Flavobacterium chungbukense sp. nov., isolated from soil. Int J Syst Evol Microbiol 2011; 61:2734–2739 [View Article][PubMed]
    [Google Scholar]
  52. Zamora L, Vela AI, Sánchez-Porro C, Palacios MA, Domínguez L et al. Characterization of flavobacteria possibly associated with fish and fish farm environment. Description of three novel Flavobacterium species: Flavobacterium collinsii sp. nov., Flavobacterium branchiarum sp. nov., and Flavobacterium branchiicola sp. nov. Aquaculture 2013; 416-417:346–353 [View Article]
    [Google Scholar]
  53. Yang JE, Kim SY, Im WT, Yi TH. Flavobacterium ginsenosidimutans sp. nov., a bacterium with ginsenoside converting activity isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2011; 61:1408–1412 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001925
Loading
/content/journal/ijsem/10.1099/ijsem.0.001925
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed