1887

Abstract

A yellow-pigmented, oxidase-positive, catalase-negative, Gram-stain-negative, rod-shaped, aerobic and non-motile bacterial strain designated K3R-10 was isolated from a freshwater source. The strain grew over a temperature range from 4 to 35 °C (optimum, 30 °C), pH range pH 6–8 (optimum, pH 7) and in the presence of 0–0.5 % NaCl (optimum, 0 %). Phylogenetic analysis based on 16S rRNA gene sequence revealed that strain K3R-10 belonged to the genus and shared close similarities with LMG 10402 (97.0 %), LMG 26729 (96.4 %), IFO 15030 (96.4 %) and 412R-09 (96.3 %), but formed a distinct phylogenetic line of its own in the phylogenetic trees. The polar lipids consisted of phosphatidylethanolamine, an unidentified aminolipid and three unidentified phospholipids. The DNA G+C content was 35.4 mol%, MK-6 was the major isoprenoid quinone, and homospermidine was the predominant polyamine. The predominant cellular fatty acids were iso-C 3-OH, iso-C, a summed feature comprising Cω7 and/or Cω6 and iso-C G. The absence of aminophospholipid, acid production from carbohydrates, DNA G+C content and colony morphology differentiated strain K3R-10 from related species of the genus . Thus, on the basis of phenotypic, chemotaxonomic and phylogenetic features, strain K3R-10 evidently represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is K3R-10 (=JCM 31220=KCTC 52563).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001920
2017-07-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2166.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001920&mimeType=html&fmt=ahah

References

  1. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM et al. Genus II. Flavobacterium gen. nov. In Bergey’s Manual of Determinative Bacteriology Baltimore: Williams & Wilkins; 1923; pp.97–117
    [Google Scholar]
  2. Bernardet JF, Bowman JP. Genus I. Flavobacterium Bergey, et al. 1923. In Whitman W. (editor) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 4 Baltimore: Williams & Wilkins; 2011; pp.112–154
    [Google Scholar]
  3. Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 1996;46:128–148 [CrossRef]
    [Google Scholar]
  4. McBride MJ, Xie G, Martens EC, Lapidus A, Henrissat B et al. Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol 2009;75:6864–6875 [CrossRef][PubMed]
    [Google Scholar]
  5. Jit S, Dadhwal M, Prakash O, Lal R. Flavobacterium lindanitolerans sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 2008;58:1665–1669 [CrossRef][PubMed]
    [Google Scholar]
  6. Fu Y, Tang X, Lai Q, Zhang C, Zhong H et al. Flavobacterium beibuense sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2011;61:205–209 [CrossRef][PubMed]
    [Google Scholar]
  7. Sang MK, Kim KD. The volatile-producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper. J Appl Microbiol 2012;113:383–398 [CrossRef][PubMed]
    [Google Scholar]
  8. Kolton M, Sela N, Elad Y, Cytryn E. Comparative genomic analysis indicates that niche adaptation of terrestrial F lavobacteria is strongly linked to plant glycan metabolism. PLoS One 2013;8:e76704 [CrossRef][PubMed]
    [Google Scholar]
  9. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  10. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  11. Delong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992;89:5685–5689 [CrossRef][PubMed]
    [Google Scholar]
  12. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2017; in press
    [Google Scholar]
  13. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  16. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971;20:406–416 [CrossRef]
    [Google Scholar]
  17. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;33:152–155
    [Google Scholar]
  18. Han SJ, Yoo YJ, Kang HS. Characterization of a bifunctional cellulase and its structural gene. The cell gene of Bacillus sp. D04 has exo- and endoglucanase activity. J Biol Chem 1995;270:26012–26019 [CrossRef][PubMed]
    [Google Scholar]
  19. Barrow G, Feltham RKA. Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993;[CrossRef]
    [Google Scholar]
  20. Dong K, Chen F, Du Y, Wang G. Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genus Flavobacterium and Flavobacterium cauense, Flavobacterium saliperosum and Flavobacterium suncheonense. Int J Syst Evol Microbiol 2013;63:886–892 [CrossRef][PubMed]
    [Google Scholar]
  21. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  22. Collins MD. Isoprenoid quinone analysis in classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp.267–287
    [Google Scholar]
  23. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207[CrossRef]
    [Google Scholar]
  24. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002;4:770–773 [CrossRef][PubMed]
    [Google Scholar]
  25. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988;11:1–8 [CrossRef]
    [Google Scholar]
  26. Feng H, Zeng Y, Huang Y. Flavobacterium palustre sp. nov., isolated from soil of xixi wetland in Zhejiang Province, China. Int J Syst Evol Microbiol 2015;65:1003–1007[CrossRef]
    [Google Scholar]
  27. Liu Y, Jin JH, Zhou YG, Liu HC, Liu ZP. Flavobacterium caeni sp. nov., isolated from a sequencing batch reactor for the treatment of malachite green effluents. Int J Syst Evol Microbiol 2010;60:417–421 [CrossRef][PubMed]
    [Google Scholar]
  28. Kim JH, Kim KY, Cha CJ. Flavobacterium chungangense sp. nov., isolated from a freshwater lake. Int J Syst Evol Microbiol 2009;59:1754–1758 [CrossRef][PubMed]
    [Google Scholar]
  29. Anderson RL, Ordal EJ. Cytophaga succinicans sp. n., a factaltatively anaerobic, aquatic myxobacterium. J Bacteriol 1961;81:130–138[PubMed]
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  31. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–132[CrossRef]
    [Google Scholar]
  32. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  33. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983;[CrossRef]
    [Google Scholar]
  34. Wakabayashi H, Huh GJ, Kimura N. Flavobacterium branchiophila sp. nov., a causative agent of bacterial gill disease of freshwater fishes. Int J Syst Bacteriol 1989;39:213–216 [CrossRef]
    [Google Scholar]
  35. Zamora L, Vela AI, Sánchez-Porro C, Palacios MA, Moore ER et al. Flavobacterium tructae sp. nov. and Flavobacterium piscis sp. nov., isolated from farmed rainbow trout (Oncorhynchus mykiss). Int J Syst Evol Microbiol 2014;64:392–399 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001920
Loading
/content/journal/ijsem/10.1099/ijsem.0.001920
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error