1887

Abstract

An extremely halophilic archaeon, designated strain 5-3, was isolated from a soil sample of Meighan wetland in Iran. Strain 5-3 was strictly aerobic, catalase-positive and oxidase-negative. Cells were Gram-stain-negative, non-motile and ovoid. Colonies of strain 5-3 were cream-coloured. The isolate showed optimum growth at 4.0 M NaCl, 40 °C and pH 7.0. The major polar lipids of the strain were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, two unknown phospholipids and three glycolipids (including one that was chromatographically identical to S-DGD). The major respiratory quinone was menaquinone MK-8. The G+C content of the genomic DNA was 61.5 mol%. The closest relative was JCM 17869 with 97.3 % similarity in the orthologous 16S rRNA gene sequence. Analysis of 16S rRNA and gene sequences indicated that strain 5-3 is a member of the genus in the family and forms a distinct cluster. On the basis of phylogenetic analysis, and phenotypic and chemotaxonomic characteristics, a novel species of the family , sp. nov., is proposed. The type strain is 5-3 (=IBRC-M 11063=LMG 29247).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001909
2017-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2142.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001909&mimeType=html&fmt=ahah

References

  1. Grant WD. Life at low water activity. Philos Trans R Soc Lond B Biol Sci 2004; 359:1249–1267 [View Article][PubMed]
    [Google Scholar]
  2. Gupta RS, Naushad S, Baker S. Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int J Syst Evol Microbiol 2015; 65:1050–1069 [View Article][PubMed]
    [Google Scholar]
  3. Oren A. The order halobacteriales . In The Prokaryotes Springer New York: 2006 pp. 113–164 [CrossRef]
    [Google Scholar]
  4. Makhdoumi-Kakhki A, Amoozegar MA, Ventosa A. Halovenus aranensis gen. nov., sp. nov., an extremely halophilic archaeon from Aran-Bidgol salt lake. Int J Syst Evol Microbiol 2012; 62:1331–1336 [View Article][PubMed]
    [Google Scholar]
  5. Tindall BJ. Taxonomic problems arising in the genera Haloterrigena and Natrinema . Int J Syst Evol Microbiol 2003; 53:1697–1698 [View Article][PubMed]
    [Google Scholar]
  6. Minegishi H, Kamekura M, Itoh T, Echigo A, Usami R et al. Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B' (rpoB') gene. Int J Syst Evol Microbiol 2010; 60:2398–2408 [View Article][PubMed]
    [Google Scholar]
  7. McGenity TJ, Gemmell, Grant WD. Proposal of a new halobacterial genus Natrinema gen. nov., with two species Natrinema pellirubrum nom. nov. and Natrinema pallidum nom. nov. Int J Syst Evol Microbiol 1998; 48:1187–1196
    [Google Scholar]
  8. Ventosa A, Gutiérrez MC, Kamekura M, Dyall-Smith ML. Proposal to transfer Halococcus turkmenicus, Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov., comb. nov. Int J Syst Evol Microbiol 1999; 49:131–136 [View Article][PubMed]
    [Google Scholar]
  9. Rahimpour-Bonab H, Abdi L. Sedimentology and origin of Meyghan lake/playa deposits in Sanandaj–Sirjan zone, Iran. Carbonates Evaporites 2012; 27:375–393 [View Article]
    [Google Scholar]
  10. Nikou MM, Ramezani M, Amoozegar MA, Rasouli M, Fazeli SA et al. Salininema proteolyticum gen. nov., sp. nov., a halophilic rare actinomycete isolated from wetland soil, and emended description of the family Glycomycetaceae . Int J Syst Evol Microbiol 2015; 65:3727–3733 [View Article][PubMed]
    [Google Scholar]
  11. Cui HL, Gao X, Sun FF, Dong Y, Xu XW, Xw X et al. Halogranum rubrum gen. nov., sp. nov., a halophilic archaeon isolated from a marine solar saltern. Int J Syst Evol Microbiol 2010; 60:1366–1371 [View Article][PubMed]
    [Google Scholar]
  12. Dyall-Smith M. The Halohandbook: Protocols for Haloarchaeal Genetics, Version 7.2 2009
    [Google Scholar]
  13. Minegishi H, Kamekura M, Kitajima-Ihara T, Nakasone K, Echigo A et al. Gene orders in the upstream of 16S rRNA genes divide genera of the family Halobacteriaceae into two groups. Int J Syst Evol Microbiol 2012; 62:188–195 [View Article][PubMed]
    [Google Scholar]
  14. Miyazaki S, Sugawara H, Gojobori T, Tateno Y. DNA data bank of Japan (DDBJ) in XML. Nucleic Acids Res 2003; 31:13–16 [View Article][PubMed]
    [Google Scholar]
  15. Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 1988; 85:2444–2448 [View Article][PubMed]
    [Google Scholar]
  16. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  19. Silvestro D, Michalak I. raxmlGUI: a graphical front-end for RAxML. Org Divers Evol 2012; 12:335–337 [View Article]
    [Google Scholar]
  20. Stamatakis A, Ludwig T, Meier H. RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 2005; 21:456–463 [View Article][PubMed]
    [Google Scholar]
  21. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  22. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  23. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiology Today 2006; 33:152–155
    [Google Scholar]
  24. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  25. Albuquerque L, Taborda M, La Cono V, Yakimov M, da Costa MS. Natrinema salaciae sp. nov., a halophilic archaeon isolated from the deep, hypersaline anoxic lake Medee in the eastern Mediterranean sea. Syst Appl Microbiol 2012; 35:368–373 [View Article][PubMed]
    [Google Scholar]
  26. Castillo AM, Gutiérrez MC, Kamekura M, Xue Y, Ma Y et al. Natrinema ejinorense sp. nov., isolated from a saline lake in inner Mongolia, China. Int J Syst Evol Microbiol 2006; 56:2683–2687 [View Article][PubMed]
    [Google Scholar]
  27. Tapingkae W, Tanasupawat S, Itoh T, Parkin KL, Benjakul S et al. Natrinema gari sp. nov., a halophilic archaeon isolated from fish sauce in Thailand. Int J Syst Evol Microbiol 2008; 58:2378–2383 [View Article][PubMed]
    [Google Scholar]
  28. Xin H, Itoh T, Zhou P, Suzuki K, Kamekura M et al. Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 2000; 50:1297–1303 [View Article][PubMed]
    [Google Scholar]
  29. Xu XW, Ren PG, Liu SJ, Wu M, Zhou PJ. Natrinema altunense sp. nov., an extremely halophilic archaeon isolated from a salt lake in Altun mountain in Xinjiang, China. Int J Syst Evol Microbiol 2005; 55:1311–1314 [View Article][PubMed]
    [Google Scholar]
  30. Oren A, Ventosa A, Grant WD. Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 1997; 47:233–238 [View Article]
    [Google Scholar]
  31. Dussault HP. An improved technique for staining red halophilic Bacteria. J Bacteriol 1955; 70:484–485[PubMed]
    [Google Scholar]
  32. Smibert RM, Krieg NR. Manual of methods for general bacteriology. In Gerhardt P, Murray RGE, Costilow RN, Nester EW, Krieg NR. et al (editors) General Characterization Washington, DC: American Society for Microbiology; 1981 pp. 411–442
    [Google Scholar]
  33. Zhu XF, Jia XM, Zhang XQ, Yh W, Chen ZY et al. Modern Experimental Technique of Microbiology Hangzhou: Zhejiang University Press (English translation); 2011
    [Google Scholar]
  34. Gutiérrez C, González C. Method for simultaneous detection of proteinase and esterase activities in extremely halophilic Bacteria. Appl Microbiol 1972; 24:516–517[PubMed]
    [Google Scholar]
  35. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic Gram-negative rods. Microbiology 1982; 128:1959–1968 [View Article]
    [Google Scholar]
  36. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  37. Kates M, Lipidology Tof. Sole distributors for the USA and Canada, elsevier science pub. Co 1986
    [Google Scholar]
  38. da Costa MS, Albuquerque L, Nobre MF, Wait R. The identification of polar lipids in prokaryotes. In Rainey FA, Oren A et al. Methods in Microbiology (Taxonomy of Prokaryotes) vol. 38 Elsevier Ltd; 2011 pp. 165–181
    [Google Scholar]
  39. Wainø M, Tindall BJ, Ingvorsen K. Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the archaea from great salt lake, Utah. Int J Syst Evol Microbiol 2000; 50:183–190 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001909
Loading
/content/journal/ijsem/10.1099/ijsem.0.001909
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error