1887

Abstract

A yellow-pigmented bacterial strain, designated 9NM-10, was isolated from an abandoned lead–zinc mine in Meizhou, Guangdong Province, China. Cells were strictly aerobic, Gram-stain-negative and motile with a polar monotrichous flagellum. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain 9NM-10 belongs to the genus Sphingomonas and was most closely related to Sphingomonas yantingensis JCM 19201 and Sphingomonas japonica JCM 15438. DNA–DNA relatedness values between strain 9NM-10 and these two type strains were 43.6±1.3 and 35.4±0.9 %, respectively. It contained Q-10 as the predominant respiratory quinone and the major cellular fatty acids were C18 : 1ω7c, C16 : 0, C17 : 1ω6c and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c). The genomic DNA G+C content of strain 9NM-10 was 68.7±0.2 mol%. The polar lipids were sphingoglycolipid, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, diphosphatidylglycerol, an unidentified phospholipid and three unidentified lipids. Strain 9NM-10 contained spermidine as the major polyamine. On the basis of phenotypic, phylogenetic and chemotaxonomic analyses, strain 9NM-10 is considered to represent a novel species of the genus Sphingomonas , for which the name Sphingomonas spermidinifaciens sp. nov. is proposed. The type strain is 9NM-10 (=GDMCC 1.657=DSM 27571). Descriptions of the genus of Sphingomonas and the species Sphingomonas yantingensis and Sphingomonas japonica were also emended in this study.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001905
2017-07-08
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2160.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001905&mimeType=html&fmt=ahah

References

  1. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990; 34: 99– 119 [CrossRef] [PubMed]
    [Google Scholar]
  2. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novo sphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51: 1405– 1417 [CrossRef] [PubMed]
    [Google Scholar]
  3. Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I et al. Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 2002; 52: 1485– 1496 [CrossRef] [PubMed]
    [Google Scholar]
  4. Busse HJ, Denner EB, Buczolits S, Salkinoja-Salonen M, Bennasar A et al. Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 2003; 53: 1253– 1260 [CrossRef] [PubMed]
    [Google Scholar]
  5. Kim M, Kang O, Zhang Y, Ren L, Chang X et al. Sphingoaurantiacus polygranulatus gen. nov., sp. nov., isolated from high-Arctic tundra soil, and emended descriptions of the genera Sandarakinorhabdus, Polymorphobacter and Rhizorhabdus and the species Sandarakinorhabdus limnophila, Rhizorhabdus argentea and Sphingomonas wittichii. Int J Syst Evol Microbiol 2016; 66: 91– 100 [CrossRef] [PubMed]
    [Google Scholar]
  6. Kim SJ, Moon JY, Lim JM, Ahn JH, Weon HY et al. Sphingomonas aerophila sp. nov. and Sphingomonas naasensis sp. nov., isolated from air and soil, respectively. Int J Syst Evol Microbiol 2014; 64: 926– 932 [CrossRef] [PubMed]
    [Google Scholar]
  7. Liu Y, Yao S, Lee YJ, Cao Y, Zhai L et al. Sphingomonas morindae sp. nov., isolated from Noni (Morinda citrifolia L.) branch. Int J Syst Evol Microbiol 2015; 65: 2817– 2823 [CrossRef] [PubMed]
    [Google Scholar]
  8. Akbar A, Chen C, Zhu L, Xin K, Cheng J et al. Sphingomonas hylomeconis sp. nov., isolated from the stem of Hylomecon japonica. Int J Syst Evol Microbiol 2015; 65: 4025– 4031 [CrossRef] [PubMed]
    [Google Scholar]
  9. Kämpfer P, Busse HJ, McInroy JA, Glaeser SP. Sphingomonas zeae sp. nov., isolated from the stem of Zea mays. Int J Syst Evol Microbiol 2015; 65: 2542– 2548 [CrossRef] [PubMed]
    [Google Scholar]
  10. Sheu SY, Chen YL, Chen WM. Sphingomonas fonticola sp. nov., isolated from spring water. Int J Syst Evol Microbiol 2015; 65: 4495– 4502 [CrossRef] [PubMed]
    [Google Scholar]
  11. Feng GD, Yang SZ, Xiong X, Li HP, Zhu HH. Sphingomonas metalli sp. nov., isolated from an abandoned lead-zinc mine. Int J Syst Evol Microbiol 2016; 66: 2046– 2051 [CrossRef] [PubMed]
    [Google Scholar]
  12. Feng GD, Yang SZ, Wang YH, Zhang XX, Zhao GZ et al. Description of a Gram-negative bacterium, Sphingomonas guangdongensis sp. nov. Int J Syst Evol Microbiol 2014; 64: 1697– 1702 [CrossRef] [PubMed]
    [Google Scholar]
  13. Feng GD, Yang SZ, Wang YH, Zhao GZ, Deng MR et al. Sphingomonas gimensis sp. nov., a novel Gram-negative bacterium isolated from abandoned lead–zinc ore mine. Antonie van Leeuwenhoek 2014; 105: 1091– 1097 [CrossRef] [PubMed]
    [Google Scholar]
  14. Feng GD, Wang YH, Li YX, Zhu HH. Deinococcus metalli sp. nov., isolated from an abandoned lead-zinc mine. Int J Syst Evol Microbiol 2015; 65: 3457– 3461 [CrossRef] [PubMed]
    [Google Scholar]
  15. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173: 697– 703 [CrossRef] [PubMed]
    [Google Scholar]
  16. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
    [Google Scholar]
  17. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731– 2739 [CrossRef] [PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  19. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10: 1073– 1095 [PubMed]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  22. Moore DD, Dowhan D. Preparation and analysis of DNA. In Ausubel FW, Brent R, Kingston RE, Moore DD, Seidman JG. et al (editors) Current Protocols in Molecular Biology New York: Wiley; 1995; pp. 2– 11
    [Google Scholar]
  23. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12: 133– 142 [CrossRef] [PubMed]
    [Google Scholar]
  24. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  25. Busse HJ, Hauser E, Kämpfer P. Description of two novel species, Sphingomonas abaci sp. nov. and Sphingomonas panni sp. nov. Int J Syst Evol Microbiol 2005; 55: 2565– 2569 [CrossRef] [PubMed]
    [Google Scholar]
  26. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44: 992– 993 [PubMed]
    [Google Scholar]
  27. Tittsler RP, Sandholzer LA. The use of Semi-solid agar for the detection of bacterial motility. J Bacteriol 1936; 31: 575– 580 [PubMed]
    [Google Scholar]
  28. Feng GD, Yang SZ, Li HP, Zhu HH. Massilia putida sp. nov., a dimethyl disulfide-producing bacterium isolated from wolfram mine tailing. Int J Syst Evol Microbiol 2016; 66: 50– 55 [CrossRef] [PubMed]
    [Google Scholar]
  29. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. et al (editors) Methods for General and Molecular Microbiologyvol. 365 Washington, DC: American Society for Microbiology; 2007; pp. 384– 385
    [Google Scholar]
  30. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
  31. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  32. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]
    [Google Scholar]
  33. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42: 457– 469 [CrossRef]
    [Google Scholar]
  34. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988; 11: 1– 8 [CrossRef]
    [Google Scholar]
  35. Scherer P, Kneifel H. Distribution of polyamines in methanogenic bacteria. J Bacteriol 1983; 154: 1315– 1322 [PubMed]
    [Google Scholar]
  36. Takeuchi M, Sakane T, Yanagi M, Yamasato K, Hamana K et al. Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. Int J Syst Bacteriol 1995; 45: 334– 341 [CrossRef] [PubMed]
    [Google Scholar]
  37. Chen H, Jogler M, Rohde M, Klenk HP, Busse HJ et al. Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas. Int J Syst Evol Microbiol 2012; 62: 2835– 2843 [CrossRef] [PubMed]
    [Google Scholar]
  38. Busse HJ, Kämpfer P, Denner EB. Chemotaxonomic characterisation of Sphingomonas. J Ind Microbiol Biotechnol 1999; 23: 242– 251 [CrossRef] [PubMed]
    [Google Scholar]
  39. Hamana K, Sakamoto A, Tachiyanagi S, Terauchi E, Takeuchi M. Polyamine profiles of some members of the alpha subclass of the class Proteobacteria: polyamine analysis of twenty recently described genera.. Microbiol Cult Collect 2003; 19: 13– 21
    [Google Scholar]
  40. Hamana K, Sato W, Gouma K, Yu J, Ino Y et al. Cellular polyamine catalogues of the five classes of the phylum Proteobacteria: distributions of homospermidine within the class Alphaproteobacteria, hydroxyputrescine within the class Betaproteobacteria, norspermidine within the class Gammaproteobacteria, and spermine within the classes Deltaproteobacteria and Epsilonproteobacteria. Ann Gunma Health Sci 2006; 27: 1– 16
    [Google Scholar]
  41. Kim JH, Kim SH, Kim KH, Lee PC. Sphingomonas lacus sp. nov., an astaxanthin-dideoxyglycoside-producing species isolated from soil near a pond. Int J Syst Evol Microbiol 2015; 65: 2824– 2830 [CrossRef] [PubMed]
    [Google Scholar]
  42. Huang J, Huang Z, Zhang ZD, He LY, Sheng XF. Sphingomonas yantingensis sp. nov., a mineral-weathering bacterium isolated from purplish paddy soil. Int J Syst Evol Microbiol 2014; 64: 1030– 1034 [CrossRef] [PubMed]
    [Google Scholar]
  43. Romanenko LA, Tanaka N, Frolova GM, Mikhailov VV. Sphingomonas japonica sp. nov., isolated from the marine crustacean Paralithodes camtschatica. Int J Syst Evol Microbiol 2009; 59: 1179– 1182 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001905
Loading
/content/journal/ijsem/10.1099/ijsem.0.001905
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error