sp. nov., isolated from faecal material of a timber rattlesnake Free

Abstract

A facultatively anaerobic, Gram-stain-positive bacterium, designated ETRF1, was found in faecal material of a timber rattlesnake (). Based on a comparative 16S rRNA gene sequence analysis, the isolate was assigned to the genus . The 16S rRNA gene sequence of strain ETRF1 showed >97 % similarity to that of the type strains of , , , , , , , , , , and The organism could be distinguished from these 12 phylogenetically related enterococci using conventional biochemical testing, the Rapid ID32 Strep system, comparative and gene sequence analysis, and comparative whole genome sequence analysis. The estimated DNA–DNA hybridization values were <70 %, and average nucleotide identity values were <96 %, when compared to these 12 species, further validating that ETRF1 represents a unique species within the genus . On the basis of these analyses, strain ETRF1 (=CCUG 65857=LMG 28312) is proposed as the type strain of a novel species, sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001900
2017-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/6/1984.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001900&mimeType=html&fmt=ahah

References

  1. Parte AC. LPSN—list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–D616 [View Article][PubMed]
    [Google Scholar]
  2. Devriese LA, Pot B. The genus Enterococcus. In Wood BJB, Holzapfel WH. (editors) The Genera of Lactic Acid Bacteria London: Blackie Academic & Professional; 1995 pp. 327–367 [CrossRef]
    [Google Scholar]
  3. Yu J, Gao W, Qing M, Sun Z, Wang W et al. Identification and characterization of lactic acid bacteria isolated from traditional pickles in Sichuan, China. J Gen Appl Microbiol 2012; 58:163–172 [View Article][PubMed]
    [Google Scholar]
  4. Izquierdo E, Wagner C, Marchioni E, Aoude-Werner D, Ennahar S. Enterocin 96, a novel class II bacteriocin produced by Enterococcus faecalis WHE 96, isolated from Munster cheese. Appl Environ Microbiol 2009; 75:4273–4276 [View Article][PubMed]
    [Google Scholar]
  5. Rossi EA, Vendramini RC, Carlos IZ, Pei YC, de Valdez GF. Development of a novel fermented soymilk product with potential probiotic properties. Eur Food Res Technol 1999; 209:305–307 [View Article]
    [Google Scholar]
  6. Franz CM, Stiles ME, Schleifer KH, Holzapfel WH. Enterococci in foods-a conundrum for food safety. Int J Food Microbiol 2003; 88:105–122 [View Article][PubMed]
    [Google Scholar]
  7. Foulquié Moreno MR, Sarantinopoulos P, Tsakalidou E, de Vuyst L. The role and application of enterococci in food and health. Int J Food Microbiol 2006; 106:1–24 [View Article][PubMed]
    [Google Scholar]
  8. Murray BE. The life and times of the Enterococcus. Clin Microbiol Rev 1990; 3:46–65 [View Article][PubMed]
    [Google Scholar]
  9. Domig KJ, Mayer HK, Kneifel W. Methods used for the isolation, enumeration, characterisation and identification of Enterococcus spp. 2. pheno- and genotypic criteria. Int J Food Microbiol 2003; 88:165–188 [View Article][PubMed]
    [Google Scholar]
  10. Devriese LA, Vancanneyt M, Descheemaeker P, Baele M, van Landuyt HW et al. Differentiation and identification of Enterococcus durans, E. hirae and E. villorum. J Appl Microbiol 2002; 92:821–827 [View Article][PubMed]
    [Google Scholar]
  11. Teixeira LM, Carvalho MGS, Facklam RR, Shewmaker PL. Enterococcus. In Jorgensen JH, Pfaller MA, Carroll KC, Funke G, Landry ML. et al. (editors) Manual of Clinical Microbiology, 11th ed. Washington, DC: American Society for Microbiology; 2015 pp. 403–421 [CrossRef]
    [Google Scholar]
  12. Facklam R, Elliott JA. Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci, excluding the streptococci and enterococci. Clin Microbiol Rev 1995; 8:479–495[PubMed]
    [Google Scholar]
  13. Facklam RR, Carvalho MGS, Teixeira LM. History, taxonomy, biochemical characteristics, and antibiotic susceptibility testing of enterococci. In Gilmore MS, Clewell DB, Courvalin P, Dunny GM, Murray BE. et al (editors) The Enterococci, Pathogenesis, Molecular Biology, and Antibiotic Resistance Washington, DC: American Society for Microbiology; 2002 pp. 1–54
    [Google Scholar]
  14. Humrighouse BW, Emery BD, Kelly AJ, Metcalfe MG, Mbizo J et al. Haematospirillum jordaniae gen. nov., sp. nov., isolated from human blood samples. Antonie van Leeuwenhoek 2016; 109:493–500 [View Article][PubMed]
    [Google Scholar]
  15. Shewmaker PL, Steigerwalt AG, Nicholson AC, Carvalho MG, Facklam RR et al. Reevaluation of the taxonomic status of recently described species of Enterococcus: evidence that E. thailandicus is a senior subjective synonym of ‘E. Sanguinicola’ and confirmation of E. caccae as a species distinct from E. silesiacus. J Clin Microbiol 2011; 49:2676–2679 [View Article][PubMed]
    [Google Scholar]
  16. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  17. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article][PubMed]
    [Google Scholar]
  18. Svec P, Devriese LA, Sedlácek I, Baele M, Vancanneyt M et al. Enterococcus haemoperoxidus sp. nov. and Enterococcus moraviensis sp. nov., isolated from water. Int J Syst Evol Microbiol 2001; 51:1567–1574 [View Article][PubMed]
    [Google Scholar]
  19. Svec P, Vancanneyt M, Sedlácek I, Naser SM, Snauwaert C et al. Enterococcus silesiacus sp. nov. and Enterococcus termitis sp. nov. Int J Syst Evol Microbiol 2006; 56:577–581 [View Article][PubMed]
    [Google Scholar]
  20. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P et al. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 2005; 151:2141–2150 [View Article][PubMed]
    [Google Scholar]
  21. Carvalho MG, Shewmaker PL, Steigerwalt AG, Morey RE, Sampson AJ et al. Enterococcus caccae sp. nov., isolated from human stools. Int J Syst Evol Microbiol 2006; 56:1505–1508 [View Article][PubMed]
    [Google Scholar]
  22. Sistek V, Maheux AF, Boissinot M, Bernard KA, Cantin P et al. Enterococcus ureasiticus sp. nov. and Enterococcus quebecensis sp. nov., isolated from water. Int J Syst Evol Microbiol 2012; 62:1314–1320 [View Article][PubMed]
    [Google Scholar]
  23. Sedláček I, Holochová P, Mašlaňová I, Kosina M, Spröer C et al. Enterococcus ureilyticus sp. nov. and Enterococcus rotai sp. nov., two urease-producing enterococci from the environment. Int J Syst Evol Microbiol 2013; 63:502–510 [View Article][PubMed]
    [Google Scholar]
  24. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  25. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  26. Svec P, Vandamme P, Bryndová H, Holochová P, Kosina M et al. Enterococcus plantarum sp. nov., isolated from plants. Int J Syst Evol Microbiol 2012; 62:1499–1505 [View Article][PubMed]
    [Google Scholar]
  27. Niemi RM, Ollinkangas T, Paulin L, Svec P, Vandamme P et al. Enterococcus rivorum sp. nov., from water of pristine brooks. Int J Syst Evol Microbiol 2012; 62:2169–2173 [View Article][PubMed]
    [Google Scholar]
  28. Schleifer KH, Kilpper-Balz R. Transfer of Streptococcus faecalis and Streptococcus faecium to the genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int J Syst Bacteriol 1984; 34:31–34 [View Article]
    [Google Scholar]
  29. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  30. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article][PubMed]
    [Google Scholar]
  31. Lauer AC, Humrighouse BW, Loparev V, Shewmaker PL, Whitney AM et al. Complete genome sequences of Enterococcus rotai LMG 26678T and Enterococcus silesiacus LMG 23085T. Genome Announc 2016; 4:e01387 [View Article][PubMed]
    [Google Scholar]
  32. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article][PubMed]
    [Google Scholar]
  33. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  34. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article][PubMed]
    [Google Scholar]
  35. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011; 7:e1002195 [View Article][PubMed]
    [Google Scholar]
  36. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article][PubMed]
    [Google Scholar]
  37. Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 2007; 10:504–509 [View Article][PubMed]
    [Google Scholar]
  38. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  39. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  40. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001900
Loading
/content/journal/ijsem/10.1099/ijsem.0.001900
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed