1887

Abstract

A novel Gram-stain-negative, facultatively anaerobic, yellowish and agar-digesting marine bacterium, designated strain QM50, was isolated from coastal seawater in an aquaculture site near Qingdao, China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate represented a member of the genus and exhibited the highest sequence similarity (97.4 %) to SMK-10. Average nucleotide identity (ANI) values based on draft genome sequences between strain QM50 and KCTC 12480 showed a relatedness of 72.0 % (ANIb) and 85.1 % (ANIm). Cells of strain QM50 were approximately 0.3–0.6×0.8–2.5 µm in size and motile by means of a polar flagellum. Growth occurred in the presence of 1.0–6.0 % (w/v) NaCl (optimum, 2.0–3.0 %), at pH 6.5–8.5 (optimum, pH 7.0) and at 4–37 °C (optimum, 28–30 °C). Strain QM50 was found to contain ubiquinone 8 (Q-8) as the predominant ubiquinone and summed feature 3 (Cω7 and/or iso-C 2-OH), C and Cω8 as the main cellular fatty acids. Phosphatidylethanolamine and phosphatidylglycerol were found to be major polar lipids. The DNA G+C content of strain QM50 was determined to be 35.7 mol%. On the basis of phylogenetic and phenotypic data, strain QM50 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is QM50 (=KCTC 52273=MCCC 1H00143).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001897
2017-06-01
2020-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/6/1969.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001897&mimeType=html&fmt=ahah

References

  1. Ivanova EP, Flavier S, Christen R. Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 2004;54:1773–1788 [CrossRef][PubMed]
    [Google Scholar]
  2. Zhang Y, Tang K, Shi X, Zhang XH. Description of Thalassotalea piscium gen. nov., sp. nov., isolated from flounder (Paralichthys olivaceus), reclassification of four species of the genus Thalassomonas as members of the genus Thalassotalea gen. nov. and emended description of the genus Thalassomonas. Int J Syst Evol Microbiol 2014;64:1223–1228 [CrossRef][PubMed]
    [Google Scholar]
  3. Deming JW, Somers LK, Straube WL, Swartz DG, Macdonell MT. Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov. Syst Appl Microbiol 1988;10:152–160 [CrossRef]
    [Google Scholar]
  4. Wang FQ, Lin XZ, Chen GJ, Du ZJ. Colwellia arctica sp. nov., isolated from Arctic marine sediment. Antonie Van Leeuwenhoek 2015;107:723–729 [CrossRef][PubMed]
    [Google Scholar]
  5. Yu Y, Li HR, Zeng YX. Colwellia chukchiensis sp. nov., a psychrotolerant bacterium isolated from the Arctic Ocean. Int J Syst Evol Microbiol 2011;61:850–853 [CrossRef][PubMed]
    [Google Scholar]
  6. Zhang DC, Yu Y, Xin YH, Liu HC, Zhou PJ et al. Colwellia polaris sp. nov., a psychrotolerant bacterium isolated from Arctic sea ice. Int J Syst Evol Microbiol 2008;58:1931–1934 [CrossRef][PubMed]
    [Google Scholar]
  7. Bowman JP, Gosink JJ, Mccammon SA, Lewis TE, Nichols DS et al. Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22: 63). Int J Syst Bacteriol 1998;48:1171–1180 [CrossRef]
    [Google Scholar]
  8. Nogi Y, Hosoya S, Kato C, Horikoshi K. Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int J Syst Evol Microbiol 2004;54:1627–1631 [CrossRef][PubMed]
    [Google Scholar]
  9. Du ZJ, Zhang DC, Liu SN, Chen JX, Tian XL et al. Gilvimarinus chinensis gen. nov., sp. nov., an agar-digesting marine bacterium within the class Gammaproteobacteria isolated from coastal seawater in Qingdao, China. Int J Syst Evol Microbiol 2009;59:2987–2990 [CrossRef][PubMed]
    [Google Scholar]
  10. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp.115–175
    [Google Scholar]
  11. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  12. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  13. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  16. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  17. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  18. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  19. Dong XZ, Cai MY. Determination of Biochemical Properties. Manual for the Systematic Identification of General Bacteria Beijing: Science Press; 2001; pp.370–398
    [Google Scholar]
  20. Du ZJ, Wang Y, Dunlap C, Rooney AP, Chen GJ. Draconibacterium orientale gen. nov., sp. nov., isolated from two distinct marine environments, and proposal of Draconibacteriaceae fam. nov. Int J Syst Evol Microbiol 2014;64:1690–1696 [CrossRef][PubMed]
    [Google Scholar]
  21. CLSI Performance Standards for Antimicrobial Susceptibility Testing; 22nd Informational Supplement M100-S22 Wayne, PA: Clinical and Laboratory Standards Institute; 2012
    [Google Scholar]
  22. Kim YO, Park S, Nam BH, Jung YT, Kim DG et al. Colwellia meonggei sp. nov., a novel gammaproteobacterium isolated from sea squirt Halocynthia roretzi. Antonie van Leeuwenhoek 2013;104:1021–1027 [CrossRef][PubMed]
    [Google Scholar]
  23. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  24. Tindall B, Sikorski J, Smibert R, Krieg N. Phenotypic characterization and the principles of comparative systematics. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM Press; 2007; pp.330–393
    [Google Scholar]
  25. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  26. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from Various Sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  27. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  28. Park S, Jung YT, Yoon JH. Colwellia sediminilitoris sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016;66:3258–3263 [CrossRef][PubMed]
    [Google Scholar]
  29. Jung SY, Oh TK, Yoon JH. Colwellia aestuarii sp. nov., isolated from a tidal flat sediment in Korea. Int J Syst Evol Microbiol 2006;56:33–37 [CrossRef][PubMed]
    [Google Scholar]
  30. Choi EJ, Kwon HC, Koh HY, Kim YS, Yang HO. Colwellia asteriadis sp. nov., a marine bacterium isolated from the starfish Asterias amurensis. Int J Syst Evol Microbiol 2010;60:1952–1957 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001897
Loading
/content/journal/ijsem/10.1099/ijsem.0.001897
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error