1887

Abstract

Three strains, CBM1, CBH23 and LAH16, belonging to the genus Paenibacillus were isolated from the midgut and hindgut of Apis mellifera. Based on 16S rRNA gene sequence analyses and phenotypic characteristics, the three strains represent two novel species. Strains CBM1 and CBH23 formed a group with Paenibacillus puldeungensis CAU 9324, and strain LAH16 belonged to the Paenibacillus amylolyticus NRRL NRS-290 subgroup of the genus Paenibacillus . The DNA G+C contents of strains CBM1, CBH23 and LAH16 were 47.7, 48.1 and 46.1 mol%, respectively. The three strains possessed diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine as polar lipids. The predominant quinone in the three strains was MK-7, but strains CBM1 and CBH23 contained an additional major quinone, MK-8(H2). While strain LAH16 and most species of the genus Paenibacillus possessed anteiso-C15 : 0, iso-C16 : 0 and C16 : 0 as major cellular fatty acids, strains CBM1 and CBH23 possessed C16 : 0, anteiso-C15 : 0, C18 : 1ω7c and C19 : 0cyclo ω8c. Based on phenotypic, chemotaxonomic and phylogenetic data, strains CBM1 and CBH23 and the strain LAH16 represent novel species in the genus Paenibacillus , for which the names Paenibacillus apis sp. nov. and Paenibacillus intestini sp. nov. are proposed, with CBM1 (=KCTC 33844=JCM 31620) and LAH16 (=KCTC 33832=JCM 31621) as the type strains, respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001887
2017-06-14
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/6/1918.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001887&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993;64:253–260[PubMed][CrossRef]
    [Google Scholar]
  2. Yoon JH, Kang SJ, Yeo SH, Oh TK. Paenibacillus alkaliterrae sp. nov., isolated from an alkaline soil in Korea. Int J Syst Evol Microbiol 2005;55:2339–2344 [CrossRef][PubMed]
    [Google Scholar]
  3. Meehan C, Bjourson AJ, Mcmullan G. Paenibacillus azoreducens sp. nov., a synthetic azo dye decolorizing bacterium from industrial wastewater. Int J Syst Evol Microbiol 2001;51:1681–1685 [CrossRef][PubMed]
    [Google Scholar]
  4. Horn MA, Ihssen J, Matthies C, Schramm A, Acker G et al. Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa. Int J Syst Evol Microbiol 2005;55:1255–1265 [CrossRef][PubMed]
    [Google Scholar]
  5. Roux V, Fenner L, Raoult D. Paenibacillus provencensis sp. nov., isolated from human cerebrospinal fluid, and Paenibacillus urinalis sp. nov., isolated from human urine. Int J Syst Evol Microbiol 2008;58:682–687 [CrossRef][PubMed]
    [Google Scholar]
  6. Lee HW, Roh SW, Yim KJ, Shin NR, Lee J et al. Paenibacillus marinisediminis sp. nov., a bacterium isolated from marine sediment. J Microbiol 2013;51:312–317 [CrossRef][PubMed]
    [Google Scholar]
  7. Ueda J, Yamamoto S, Kurosawa N. Paenibacillus thermoaerophilus sp. nov., a moderately thermophilic bacterium isolated from compost. Int J Syst Evol Microbiol 2013;63:3330–3335 [CrossRef][PubMed]
    [Google Scholar]
  8. Genersch E, Forsgren E, Pentikäinen J, Ashiralieva A, Rauch S et al. Reclassification of Paenibacillus larvae subsp. pulvifaciens and Paenibacillus larvae subsp. larvae as Paenibacillus larvae without subspecies differentiation. Int J Syst Evol Microbiol 2006;56:501–511 [CrossRef][PubMed]
    [Google Scholar]
  9. Traiwan J, Park MH, Kim W. Paenibacillus puldeungensis sp. nov., isolated from a grassy sandbank. Int J Syst Evol Microbiol 2011;61:670–673 [CrossRef][PubMed]
    [Google Scholar]
  10. Schaeffer AB, Fulton MD. A simplified method of staining endospores. Science 1933;77:194 [CrossRef][PubMed]
    [Google Scholar]
  11. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936;31:575[PubMed]
    [Google Scholar]
  12. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: a Laboratory Manual, 2nd ed. Cold spring harbor, NY: Cold spring harbor laboratory; 1989
    [Google Scholar]
  13. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  14. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  16. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  18. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Biol 1969;18:1–32 [CrossRef]
    [Google Scholar]
  19. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002;4:770–773 [CrossRef][PubMed]
    [Google Scholar]
  20. Versalovic J, Schneider M, de Bruijn FJ, Lupski JR. Genomic fingerprinting of Bacteria using repetitive sequence-based polymerase chain reaction. Method Mol Cell Biol 1994;5:25–40
    [Google Scholar]
  21. Di Pinto A, Novello L, Terio V, Tantillo G. ERIC-PCR genotyping of Paenibacillus larvae in southern Italian honey and brood combs. Curr Microbiol 2011;63:416–419 [CrossRef][PubMed]
    [Google Scholar]
  22. MIDI Sherlock Microbial Identification System Newark, DE: MIDI Inc; 2002; pp.1–18
    [Google Scholar]
  23. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  24. Xin H, Itoh T, Zhou P, Suzuki K, Kamekura M et al. Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 2000;50:1297–1303 [CrossRef][PubMed]
    [Google Scholar]
  25. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  26. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981;45:316–354[PubMed]
    [Google Scholar]
  27. Nakamura LK. Bacillus amylolyticus sp. nov., nom. rev., Bacillus lautus sp. nov., nom. rev., Bacillus pabuli sp. nov., nom. rev., and Bacillus validus sp. nov., nom. rev. Int J Syst Bacteriol 1984;34:224–226 [CrossRef]
    [Google Scholar]
  28. Sánchez MM, Fritze D, Blanco A, Spröer C, Tindall BJ et al. Paenibacillus barcinonensis sp. nov., a xylanase-producing bacterium isolated from a rice field in the Ebro river delta. Int J Syst Evol Microbiol 2005;55:935–939 [CrossRef][PubMed]
    [Google Scholar]
  29. Lee J, Shin NR, Jung MJ, Roh SW, Kim MS et al. Paenibacillus oceanisediminis sp. nov. isolated from marine sediment. Int J Syst Evol Microbiol 2013;63:428–434 [CrossRef][PubMed]
    [Google Scholar]
  30. Nelson DM, Glawe AJ, Labeda DP, Cann IK, Mackie RI. Paenibacillus tundrae sp. nov. and Paenibacillus xylanexedens sp. nov., psychrotolerant, xylan-degrading bacteria from Alaskan tundra. Int J Syst Evol Microbiol 2009;59:1708–1714 [CrossRef][PubMed]
    [Google Scholar]
  31. Lee FL, Tien CJ, Tai CJ, Wang LT, Liu YC et al. Paenibacillus taichungensis sp. nov., from soil in Taiwan. Int J Syst Evol Microbiol 2008;58:2640–2645 [CrossRef][PubMed]
    [Google Scholar]
  32. Kuisiene N, Raugalas J, Spröer C, Kroppenstedt RM, Stuknyte M et al. Paenibacillus tylopili sp.nov., a chitinolytic bacterium isolated from the mycorhizosphere of Tylopilus felleus. Folia Microbiol 2008;53:433–437 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001887
Loading
/content/journal/ijsem/10.1099/ijsem.0.001887
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error