sp. nov. isolated from the vulture Free

Abstract

Two strains (VUL4_1 and VUL4_2) of Gram-staining-positive, catalase-negative, non-spore-forming short rods were isolated from rectal swabs of Old World vultures () in the Tibet-Qinghai Plateau, China. Analysis of morphological characteristics and biochemical tests indicated that the two strains closely resembled each other but were distinct from other species of the genus previously described. Based on the results of 16S rRNA gene sequence comparison and genome analysis, strains were determined to be members of the genus , closely related to the type strains of (96.4 % 16S rRNA gene sequence similarity), (92.4 %), (92.3 %) and (92.2 %), respectively. Optimal growth conditions were 37 °C, pH 6–7, with 1 % (w/v) NaCl. Strain VUL4_1 contained Cω9 and C as the major cellular fatty acids and diphosphatidylglycerol as the major component of the polar lipids. The genomic DNA G+C content of VUL4_1 was 54.9 mol%. Strain VUL4_1 showed less than 70 % DNA–DNA relatedness with other species of the genus , further supporting strain VUL4_1 as a representative of a novel species. Based on the phenotypic data and phylogenetic inference, a novel species, sp. nov., is proposed with VUL4_1 (=CGMCC 4.7370=DSM 104050) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001884
2017-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/6/1873.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001884&mimeType=html&fmt=ahah

References

  1. Schaal KP. Genus Actinomyces. In Bergey’s Manual of Systematic Bacteriology vol. 2 1986 pp. 1383–1418
    [Google Scholar]
  2. Funke G, Englert R, Frodl R, Bernard KA, Stenger S. Actinomyces hominis sp. nov., isolated from a wound swab. Int J Syst Evol Microbiol 2010; 60:1678–1681 [View Article][PubMed]
    [Google Scholar]
  3. Hijazin M, Alber J, Lämmler C, Kämpfer P, Glaeser SP et al. Actinomyces weissii sp. nov., isolated from dogs. Int J Syst Evol Microbiol 2012; 62:1755–1760 [View Article][PubMed]
    [Google Scholar]
  4. Hoyles L, Pascual C, Falsen E, Foster G, Grainger JM et al. Actinomyces marimammalium sp. nov., from marine mammals. Int J Syst Evol Microbiol 2001; 51:151–156 [View Article][PubMed]
    [Google Scholar]
  5. Hyun DW, Shin NR, Kim MS, Kim PS, Kim JY et al. Actinomyces haliotis sp. nov., a bacterium isolated from the gut of an abalone, Haliotis discus hannai. Int J Syst Evol Microbiol 2014; 64:456–461 [View Article][PubMed]
    [Google Scholar]
  6. Renvoise A, Raoult D, Roux V. Actinomyces timonensis sp. nov., isolated from a human clinical osteo-articular sample. Int J Syst Evol Microbiol 2010; 60:1516–1521 [View Article][PubMed]
    [Google Scholar]
  7. Bittar F, Keita MB, Lagier JC, Peeters M, Delaporte E et al. Gorilla gorilla Gorilla gut: a potential reservoir of pathogenic bacteria as revealed using culturomics and molecular tools. Sci Rep 2014; 4:7174 [View Article][PubMed]
    [Google Scholar]
  8. Drexler JF, Corman VM, Müller MA, Maganga GD, Vallo P et al. Bats host major mammalian paramyxoviruses. Nat Commun 2012; 3:796 [View Article][PubMed]
    [Google Scholar]
  9. Razzauti M, Galan M, Bernard M, Maman S, Klopp C et al. A comparison between transcriptome sequencing and 16S metagenomics for detection of bacterial pathogens in wildlife. PLoS Negl Trop Dis 2015; 9:e0003929 [View Article][PubMed]
    [Google Scholar]
  10. Rupprecht CE, Turmelle A, Kuzmin IV. A perspective on Lyssavirus emergence and perpetuation. Curr Opin Virol 2011; 1:662–670 [View Article][PubMed]
    [Google Scholar]
  11. Veikkolainen V, Vesterinen EJ, Lilley TM, Pulliainen AT. Bats as reservoir hosts of human bacterial pathogen, Bartonella mayotimonensis. Emerg Infect Dis 2014; 20:960–967 [View Article][PubMed]
    [Google Scholar]
  12. Lu X, Ke D, Zeng X, Gong G, Ci R. Status, ecology, and conservation of the himalayan griffon Gyps himalayensis (Aves, Accipitridae) in the tibetan plateau. Ambio 2009; 38:166–173 [View Article][PubMed]
    [Google Scholar]
  13. Parra J, Tellería JL. The increase in the Spanish population of griffon vulture Gyps fulvus during 1989–1999: effects of food and nest site availability. Bird Conserv Int 2004; 14:33–41 [View Article]
    [Google Scholar]
  14. Reed TM, Rocke TE. The role of avian carcasses in botulism epizootics. Wildlife Society Bulletin 1992; 20:175–182
    [Google Scholar]
  15. Roggenbuck M, Bærholm Schnell I, Blom N, Bælum J, Bertelsen MF et al. The microbiome of new world vultures. Nat Commun 2014; 5:5498 [View Article][PubMed]
    [Google Scholar]
  16. Meng X, Lu S, Yang J, Jin D, Wang X et al. Metataxonomics revealed the vultures as reservoir for Clostridium perfringens. Emerg Microbes Infect 2016 In press
    [Google Scholar]
  17. Xu Y, Xu X, Lan R, Xiong Y, Ye C et al. An O island 172 encoded RNA helicase regulates the motility of Escherichia coli O157:H7. PLoS One 2013; 8:e64211 [View Article][PubMed]
    [Google Scholar]
  18. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 2011; 42:989–1005 [View Article]
    [Google Scholar]
  19. Ventosa A, Marquez MC, Kocur M, Tindall BJ. Comparative study of "Micrococcus sp." strains CCM 168 and CCM 1405 and members of the genus Salinicoccus. Int J Syst Bacteriol 1993; 43:245–248 [View Article][PubMed]
    [Google Scholar]
  20. Watanabe M, Aoyagi Y, Ohta A, Minnikin DE. Structures of phenolic glycolipids from Mycobacterium kansasii. Eur J Biochem 1997; 248:93–98 [View Article][PubMed]
    [Google Scholar]
  21. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316[PubMed]
    [Google Scholar]
  22. Lane DJ. 16s/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley and Sons; 1991 pp. 125–175
    [Google Scholar]
  23. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article][PubMed]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  26. Kolaczkowski B, Thornton JW. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 2004; 431:980–984 [View Article][PubMed]
    [Google Scholar]
  27. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  29. Henssge U, do T, Radford DR, Gilbert SC, Clark D et al. Emended description of Actinomyces naeslundii and descriptions of Actinomyces oris sp. nov. and Actinomyces johnsonii sp. nov., previously identified as Actinomyces naeslundii genospecies 1, 2 and WVA 963. Int J Syst Evol Microbiol 2009; 59:509–516 [View Article][PubMed]
    [Google Scholar]
  30. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001884
Loading
/content/journal/ijsem/10.1099/ijsem.0.001884
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed