Transfer of Gray and Thornton 1928 to genus as comb. nov., and emended description of the genus Free

Abstract

A polyphasic taxonomic approach including analysis of phenotypic, physiological and genotypic characteristics, 16S rRNA gene sequence and DNA–DNA hybridization analysis was used to determine the most consistent affiliation of . ATCC 23328 exhibited phenotypic traits of members of the genus including cellular fatty acid composition, quinone and limited range of substrates that could be used. Antibiotic susceptibility and physiological characteristics were determined. The DNA G+C content was 65.7 mol%. Phylogenetic analysis revealed that the type strains of , , and were the nearest relatives (16S rRNA gene sequence similarity of 98.0 to 98.8 %). All the other type strains of species of the genus showed high 16S rRNA gene sequence similarities (96.8 to 97.2 %). DNA–DNA hybridizations revealed 31.0, 32.0, 43.3 and 43.6 % reassociation between ATCC 23328 and the type strains of , , and , respectively. Our overall results indicate that should be transferred to the genus as a novel species of this genus, comb. nov. Since the original description of the genus was made with only one species ( ), an emendation of the genus description is proposed in order to match better with the characteristics of the eleven novel species assigned to this genus since then.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001880
2017-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/6/1894.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001880&mimeType=html&fmt=ahah

References

  1. Gray PHH, Thornton HG. Soil Bacteria that decompose certain aromatic compounds. Zentralbl Bakterio Parasintenkd Infectionskr Hyg Abt II 1928,; 73:74–96
    [Google Scholar]
  2. Oyaizu H, Komagata K. Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J Gen Appl Microbiol 1983; 29:17–40 [View Article]
    [Google Scholar]
  3. Van den Mooter M, Swings J. Numerical analysis of 295 phenotypic features of 266 Xanthomonas strains and related strains and an improved taxonomy of the genus. Int J Syst Bacteriol 1990; 40:348–369 [View Article][PubMed]
    [Google Scholar]
  4. Yang P, de Vos P, Kersters K, Swings J. Polyamine patterns as chemotaxonomic markers for the genus Xanthomonas. Int J Syst Bacteriol 1993; 43:709–714 [View Article]
    [Google Scholar]
  5. Singer E, Debette J, Lepretre A, Swings J. Comparative esterase electrophoretic polymorphism and phenotypic analysis of Xanthomonas maltophilia and related strains. Syst Appl Microbiol 1994; 17:387–394 [View Article]
    [Google Scholar]
  6. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 2000; 50:1563–1589 [View Article][PubMed]
    [Google Scholar]
  7. Assih EA, Ouattara AS, Thierry S, Cayol JL, Labat M et al. Stenotrophomonas acidaminiphila sp. nov., a strictly aerobic bacterium isolated from an upflow anaerobic sludge blanket (UASB) reactor. Int J Syst Evol Microbiol 2002; 52:559–568 [View Article][PubMed]
    [Google Scholar]
  8. Kaparullina E, Doronina N, Chistyakova T, Trotsenko Y. Stenotrophomonas chelatiphaga sp. nov., a new aerobic EDTA-degrading bacterium. Syst Appl Microbiol 2009; 32:157–162 [View Article][PubMed]
    [Google Scholar]
  9. Kim HB, Srinivasan S, Sathiyaraj G, Quan LH, Kim SH et al. Stenotrophomonas ginsengisoli sp. nov., isolated from a ginseng field. Int J Syst Evol Microbiol 2010; 60:1522–1526 [View Article][PubMed]
    [Google Scholar]
  10. Ramos PL, van Trappen S, Thompson FL, Rocha RC, Barbosa HR et al. Screening for endophytic nitrogen-fixing Bacteria in Brazilian sugar cane varieties used in organic farming and description of Stenotrophomonas pavanii sp. nov. Int J Syst Evol Microbiol 2011; 61:926–931 [View Article][PubMed]
    [Google Scholar]
  11. Svensson-Stadler LA, Mihaylova SA, Moore ERB. Stenotrophomonas interspecies differentiation and identification by gyrB sequence analysis. FEMS Microbiol Lett 2012; 327:15–24 [View Article][PubMed]
    [Google Scholar]
  12. Patil PP, Midha S, Kumar S, Patil PB. Genome sequence of type strains of genus Stenotrophomonas. Front Microbiol 2016; 7:1–6 [View Article][PubMed]
    [Google Scholar]
  13. Hauben L, Vauterin L, Moore ERB, Hoste B, Swings J. Genomic diversity of the genus Stenotrophomonas. Int J Syst Bacteriol 1999; 49:1749–1760 [View Article][PubMed]
    [Google Scholar]
  14. Coenye T, Vanlaere E, Lipuma JJ, Vandamme P. Identification of genomic groups in the genus Stenotrophomonas using gyrB RFLP analysis. FEMS Immunol Med Microbiol 2004; 40:181–185 [View Article][PubMed]
    [Google Scholar]
  15. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 1994; 44:846–849 [View Article]
    [Google Scholar]
  16. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International committee on systematic bacteriology. report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  17. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  18. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  19. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  20. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  21. Escara JF, Hutton JR. Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 1980; 19:1315–1327 [View Article][PubMed]
    [Google Scholar]
  22. Huss VAR, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4:184–192 [View Article][PubMed]
    [Google Scholar]
  23. Jahnke K-D, Bahnweg G. Assessing natural relationships in the basidiomycetes by DNA analysis. Trans Br Mycol Soc 1986; 87:175–191 [View Article]
    [Google Scholar]
  24. Jahnke K-D. BASIC computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 1992; 15:61–73 [View Article]
    [Google Scholar]
  25. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorimetric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Evol Microbiol 1989; 39:224–229 [View Article]
    [Google Scholar]
  26. Goris J, Suzuki K-Ichiro, de Vos P, Nakase T, Kersters K. Evaluation of a microplate DNA - DNA hybridization method compared with the initial renaturation method. Can J Microbiol 1998; 44:1148–1153 [View Article]
    [Google Scholar]
  27. Cleenwerck I, Vandemeulebroecke K, Janssens D, Swings J. Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 2002; 52:1551–1558 [View Article][PubMed]
    [Google Scholar]
  28. Yang P, Vauterin L, Vancanneyt M, Swings J, Kersters K. Application of fatty acid methyl esters for the taxonomic analysis of the genus Xanthomonas. Syst Appl Microbiol 1993; 16:47–71 [View Article]
    [Google Scholar]
  29. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  30. Lee M, Woo SG, Chae M, Shin MC, Jung HM et al. Stenotrophomonas daejeonensis sp. nov., isolated from sewage. Int J Syst Evol Microbiol 2011; 61:598–604 [View Article][PubMed]
    [Google Scholar]
  31. de Vos P, van Landschoot A, Segers P, Tytgat R, Gillis M et al. Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonas-like strains by deoxyribonucleic acid: ribosomal ribonucleic acid hybridizations. Int J Syst Bacteriol 1989; 39:35–49 [View Article]
    [Google Scholar]
  32. Ouattara AS, Assih EA, Thierry S, Cayol JL, Labat M et al. Bosea minatitlanensis sp. nov., a strictly aerobic bacterium isolated from an anaerobic digester. Int J Syst Evol Microbiol 2003; 53:1247–1251 [View Article][PubMed]
    [Google Scholar]
  33. Thierry S, Macarie H, Iizuka T, Geissdörfer W, Assih EA et al. Pseudoxanthomonas mexicana sp. nov. and Pseudoxanthomonas japonensis sp. nov., isolated from diverse environments, and emended descriptions of the genus Pseudoxanthomonas Finkmann, et al. 2000 and of its type species. Int J Syst Evol Microbiol 2004; 54:2245–2255 [View Article][PubMed]
    [Google Scholar]
  34. Palleroni NJ, Bradbury JF. Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int J Syst Bacteriol 1993; 43:606–609 [View Article][PubMed]
    [Google Scholar]
  35. Palleroni NJ. Genus IX. Stenotrophomonas Palleroni and Bradbury 1993, 608VP. In Brenner DJ, Krieg NR, Staley JT. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 2 part B The Gammaproteobacteria New York: Springer Science+Business Media, LLC; 2005 pp. 107–115
    [Google Scholar]
  36. Kersters K, Ludwig W, Vancanneyt M, de Vos P, Gillis M et al. Recent changes in the classification of the pseudomonads: an overview. Syst Appl Microbiol 1996; 19:465–477 [View Article]
    [Google Scholar]
  37. Lipski A, Klatte S, Bendinger B, Altendorf K. Differentiation of gram-negative, nonfermentative Bacteria isolated from biofilters on the basis of fatty acid composition, quinone system, and physiological reaction profiles. Appl Environ Microbiol 1992; 58:2053–2065[PubMed]
    [Google Scholar]
  38. Heylen K, Vanparys B, Peirsegaele F, Lebbe L, de Vos P. Stenotrophomonas terrae sp. nov. and Stenotrophomonas humi sp. nov., two nitrate-reducing bacteria isolated from soil. Int J Syst Evol Microbiol 2007; 57:2056–2061 [View Article][PubMed]
    [Google Scholar]
  39. Finkmann W, Altendorf K, Stackebrandt E, Lipski A. Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 2000; 50:273–282 [View Article][PubMed]
    [Google Scholar]
  40. Yang HC, Im WT, Kang MS, Shin DY, Lee ST. Stenotrophomonas koreensis sp. nov., isolated from compost in South Korea. Int J Syst Evol Microbiol 2006; 56:81–84 [View Article][PubMed]
    [Google Scholar]
  41. Wolf A, Fritze A, Hagemann M, Berg G. Stenotrophomonas rhizophila sp. nov., a novel plant-associated bacterium with antifungal properties. Int J Syst Evol Microbiol 2002; 52:1937–1944 [View Article][PubMed]
    [Google Scholar]
  42. Stanier RY, Palleroni NJ, Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 1966; 43:159–271 [View Article][PubMed]
    [Google Scholar]
  43. Lipski A, Altendorf K. Identification of heterotrophic bacteria isolated from ammonia-supplied experimental biofilters. Syst Appl Microbiol 1997; 20:448–457 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001880
Loading
/content/journal/ijsem/10.1099/ijsem.0.001880
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed