1887

Abstract

Three heterotrophic, aerobic, brown-pigmented strains, designated P97, P100 and P104, were isolated from a harbour in the southern North Sea. Phylogenetic analysis of 16S rRNA gene sequences revealed that the isolates are affiliated to the genus Phaeobacter . In silico DNA–DNA hybridization of the genome of strain P97 against those of existing type species indicated that P97 represents a novel species within the genus Phaeobacter , with Phaeobacter inhibens T5 as the closest described organism (29.6 % DNA–DNA relatedness) followed by P. gallaeciensis CIP 105210 (26.4 %). DNA–DNA hybridization demonstrated that the three new strains belong to the same species. The new isolates inhibited Pseudoalteromonas tunicata DSM 14096, and were Gram-stain-negative, catalase- and oxidase-positive, chemo-organoheterotrophic and motile. Growth occurred at pH 6.5–9.5 (optimum 7.0–8.0) and at 4–30 °C (optimum 20–28 °C). The strains required NaCl for growth. The salinity range was 0.5–6.0 % (w/v) NaCl for P97 and P100, and 0.5–5.0 % for P104, lower than values described for Phaeobacter gallaeciensis and Phaeobacter inhibens . The optimum NaCl concentration for strains P97 and P104 was 2.0–4.0 %, and for P100 was 2.0–3.0 %. Fatty acids (>1 %) comprised 18 : 1ω7c, 16 : 0, 18 : 1 ω7c 11-methyl, 18 : 0, 12 :1, 18 : 2ω7c,12, 10 : 0 3-OH and 12 : 0 3-OH. Polar lipids were phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an aminolipid, one unknown lipid and one additional unknown lipid in strain P97. The major respiratory quinone was Q10. Based on phylogenetic and phenotypic differences, the strains represent a novel species in the genus Phaeobacter , for which the name Phaeobacter porticola sp. nov. is proposed. The type strain is P97 (=DSM 103148=LMG 29594).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001879
2017-07-12
2019-09-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2153.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001879&mimeType=html&fmt=ahah

References

  1. Martens T, Heidorn T, Pukall R, Simon M, Tindall BJ et al. Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int J Syst Evol Microbiol 2006; 56: 1293– 1304 [CrossRef] [PubMed]
    [Google Scholar]
  2. Seyedsayamdost MR, Case RJ, Kolter R, Clardy J. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat Chem 2011; 3: 331– 335 [CrossRef] [PubMed]
    [Google Scholar]
  3. Berger M, Neumann A, Schulz S, Simon M, Brinkhoff T. Tropodithietic acid production in Phaeobacter gallaeciensis is regulated by N-Acyl homoserine lactone-mediated quorum sensing. J Bacteriol 2011; 193: 6576– 6585 [CrossRef]
    [Google Scholar]
  4. Brinkhoff T, Bach G, Heidorn T, Liang L, Schlingloff A et al. Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl Environ Microbiol 2004; 70: 2560– 2565 [CrossRef] [PubMed]
    [Google Scholar]
  5. D'Alvise PW, Melchiorsen J, Porsby CH, Nielsen KF, Gram L. Inactivation of Vibrio anguillarum by attached and planktonic Roseobacter cells. Appl Environ Microbiol 2010; 76: 2366– 2370 [CrossRef] [PubMed]
    [Google Scholar]
  6. Prado S, Montes J, Romalde JL, Barja JL. Inhibitory activity of Phaeobacter strains against aquaculture pathogenic Bacteria. Int Microbiol 2009; 12: 107– 114 [PubMed]
    [Google Scholar]
  7. D'Alvise PW, Lillebø S, Prol-Garcia MJ, Wergeland HI, Nielsen KF et al. Phaeobacter gallaeciensis reduces Vibrio anguillarum in cultures of microalgae and rotifers, and prevents vibriosis in cod larvae. PLoS One 2012; 7: e43996 [CrossRef] [PubMed]
    [Google Scholar]
  8. Breider S, Scheuner C, Schumann P, Fiebig A, Petersen J et al. Genome-scale data suggest reclassifications in the Leisingera-Phaeobacter cluster including proposals for Sedimentitalea gen. nov. and Pseudophaeobacter gen. nov. Front Microbiol 2014; 5: 416 [CrossRef] [PubMed]
    [Google Scholar]
  9. Ruiz-Ponte C, Cilia V, Lambert C, Nicolas JL. Roseobacter gallaeciensis sp. nov., a new marine bacterium isolated from rearings and collectors of the scallop Pecten maximus. Int J Syst Evol Microbiol 1998; 48: 537– 542 [CrossRef] [PubMed]
    [Google Scholar]
  10. Gram L, Rasmussen BB, Wemheuer B, Bernbom N, Ng YY et al. Phaeobacter inhibens from the Roseobacter clade has an environmental niche as a surface colonizer in harbors. Syst Appl Microbiol 2015; 38: 483– 493 [CrossRef] [PubMed]
    [Google Scholar]
  11. Zech H, Thole S, Schreiber K, Kalhöfer D, Voget S et al. Growth phase-dependent global protein and metabolite profiles of Phaeobacter gallaeciensis strain DSM 17395, a member of the marine Roseobacter-clade. Proteomics 2009; 9: 3677– 3697 [CrossRef] [PubMed]
    [Google Scholar]
  12. Gregersen T. Rapid method for distinction of gram-negative from gram-positive bacteria. Appl Microbiol Biotechnol 1978; 5: 123– 127 [CrossRef]
    [Google Scholar]
  13. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178: 703 [CrossRef] [PubMed]
    [Google Scholar]
  14. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  15. Dogs M, Voget S, Teshima H, Petersen J, Davenport K et al. Genome sequence of Phaeobacter inhibens type strain T5T, a secondary metabolite producing representative of the marine Roseobacter clade, and emendation of the species description of Phaeobacter inhibens. Stand Genomic Sci 2013; 9: 334– 350 [CrossRef] [PubMed]
    [Google Scholar]
  16. Buddruhs N, Pradella S, Göker M, Päuker O, Pukall R et al. Molecular and phenotypic analyses reveal the non-identity of the Phaeobacter gallaeciensis type strain deposits CIP 105210T and DSM 17395. Int J Syst Evol Microbiol 2013; 63: 4340– 4349 [CrossRef] [PubMed]
    [Google Scholar]
  17. Vaas LA, Sikorski J, Hofner B, Fiebig A, Buddruhs N et al. Opm: an R package for analysing OmniLog phenotype microarray data. Bioinformatics 2013; 29: 1823– 1824 [CrossRef] [PubMed]
    [Google Scholar]
  18. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR et al. Vegan: community ecology package. R package vegan, vers. 2.2-1. 2015
  19. Sasser M. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  20. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13: 128– 130 [CrossRef]
    [Google Scholar]
  21. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66: 199– 202 [CrossRef]
    [Google Scholar]
  22. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Technology in Bacterial Systematics New York: Wiley; 1991; pp. 115– 175
    [Google Scholar]
  23. Fisher MM, Triplett EW. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 1999; 65: 4630– 4636 [PubMed]
    [Google Scholar]
  24. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403– 410 [CrossRef] [PubMed]
    [Google Scholar]
  25. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32: 1363– 1371 [CrossRef] [PubMed]
    [Google Scholar]
  26. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25: 1754– 1760 [CrossRef] [PubMed]
    [Google Scholar]
  27. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30: 2068– 2069 [CrossRef] [PubMed]
    [Google Scholar]
  28. Thole S, Kalhoefer D, Voget S, Berger M, Engelhardt T et al. Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life. ISME J 2012; 6: 2229– 2244 [CrossRef] [PubMed]
    [Google Scholar]
  29. Frank O, Pradella S, Rohde M, Scheuner C, Klenk HP et al. Complete genome sequence of the Phaeobacter gallaeciensis type strain CIP 105210T (= DSM 26640T = BS107T). Stand Genomic Sci 2014; 9: 914– 932 [CrossRef] [PubMed]
    [Google Scholar]
  30. Cashion P, Holder-Franklin MA, Mccully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977; 81: 461– 466 [CrossRef] [PubMed]
    [Google Scholar]
  31. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12: 133– 142 [CrossRef] [PubMed]
    [Google Scholar]
  32. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4: 184– 192 [CrossRef] [PubMed]
    [Google Scholar]
  33. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2: 117– 134 [CrossRef] [PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: 60 [CrossRef] [PubMed]
    [Google Scholar]
  35. Bruhn JB, Nielsen KF, Hjelm M, Hansen M, Bresciani J et al. Ecology, inhibitory activity, and morphogenesis of a marine antagonistic bacterium belonging to the Roseobacter clade. Appl Environ Microbiol 2005; 71: 7263– 7270 [CrossRef] [PubMed]
    [Google Scholar]
  36. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  37. Beck M, Dellwig O, Fischer S, Schnetger B, Brumsack H-J. Trace metal geochemistry of organic carbon-rich watercourses draining the NW german coast. Estuar Coast Shelf Sci 2012; 104–105: 66– 79 [CrossRef]
    [Google Scholar]
  38. Wilson MZ, Wang R, Gitai Z, Seyedsayamdost MR. Mode of action and resistance studies unveil new roles for tropodithietic acid as an anticancer agent and the γ-glutamyl cycle as a proton sink. Proc Natl Acad Sci USA 2016; 113: 1630– 1635 [CrossRef] [PubMed]
    [Google Scholar]
  39. Lee M-H, Song E-J, Seo M-J, Hyun D-W, Bae J-W et al. Phaeobacter marinintestinus sp. nov., isolated from the intestine of a sea cucumber (Apostichopus japonicus). Antonie van Leeuwenhoek 2015; 107: 209– 216 [CrossRef]
    [Google Scholar]
  40. Kim HS, Hyun DW, Lee JY, Kim PS, Whon TW et al. Sedimentitalea todarodis sp. nov., isolated from the intestinal tract of a Japanese flying squid. Int J Syst Evol Microbiol 2016; 66: 3293– 3298 [CrossRef] [PubMed]
    [Google Scholar]
  41. Vandecandelaere I, Segaert E, Mollica A, Faimali M, Vandamme P. Leisingera aquimarina sp. nov., isolated from a marine electroactive biofilm, and emended descriptions of Leisingera methylohalidivorans Schaefer et al. 2002, Phaeobacter daeponensis Yoon et al. 2007 and Phaeobacter inhibens Martens et al. 2006. Int J Syst Evol Microbiol 2008; 58: 2788– 2793 [CrossRef] [PubMed]
    [Google Scholar]
  42. Yoon JH, Kang SJ, Lee SY, Oh TK. Phaeobacter daeponensis sp. nov., isolated from a tidal flat of the Yellow sea in Korea. Int J Syst Evol Microbiol 2007; 57: 856– 861 [CrossRef] [PubMed]
    [Google Scholar]
  43. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 1978; 75: 4801– 4805 [CrossRef] [PubMed]
    [Google Scholar]
  44. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003; 31: 3406– 3415 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001879
Loading
/content/journal/ijsem/10.1099/ijsem.0.001879
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error