1887

Abstract

Some bacteria collectively known as rhizobia can establish symbiotic relationships and the N-fixation process with several legumes used as green manure, in pastures and for wood production. Symbionts belonging to the genus are predominant in the tropics, and an increasing number of studies report high genetic diversity within the genus. We performed a polyphasic study with two strains belonging to the genus – SEMIA 6399 and SEMIA 6404–isolated from root nodules of (syn. ), an important legume native to eastern Brazil. In general, sequences of the 16S rRNA gene were highly conserved in members of the genus , and the two strains were positioned in the superclade, sharing 100 % nucleotide identity with , and . However, multilocus sequence analysis with four housekeeping genes (, and ) confirmed that the two strains belong to a distinct clade, sharing from 87.7 to 96.1 % nucleotide identity with related species of the genus , being most closely related to Average nucleotide identity of genome sequences between SEMIA 6399 and related species was lower than 92 %, below the threshold of species circumscription. phylogeny clustered the SEMIA strains in a clade separated from other species of the genus , and the phylogeny revealed that SEMIA 6399 presents a more divergent sequence. Other phenotypic and genotypic traits were determined for the new group, and our data support the description of the SEMIA strains as representatives of sp. nov.; SEMIA 6399 (=CNPSo 1165=BR 6010=U675=LMG 30031) was chosen as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001870
2017-06-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/6/1827.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001870&mimeType=html&fmt=ahah

References

  1. Hungria M, Loureiro MF, Mendes IC, Campo RJ, Graham PH. Inoculant preparation, production and application. In Werner W, Newton WE. (editors) Nitrogen Fixation in Agriculture, Forestry, Ecology and the Environment Dordrecht, Amsterdam: Springer; 2005 pp. 223–254 [CrossRef]
    [Google Scholar]
  2. Ormeño-Orrillo E, Hungria M, Martínez-Romero E. Dinitrogen-fixing prokaryotes. In Rosenberg E. editor The Prokaryotes – Prokaryotic Physiology and Biochemistry Berlin Heidelberg: Springer-Verlag; 2013 pp. 427–451
    [Google Scholar]
  3. Jordan DC. NOTES: transfer of Rhizobium japonicum buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 1982; 32:136–139 [View Article]
    [Google Scholar]
  4. Menna P, Barcellos FG, Hungria M. Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and glnII, recA, atpD and dnaK genes. Int J Syst Evol Microbiol 2009; 59:2934–2950 [View Article][PubMed]
    [Google Scholar]
  5. Roma Neto IV, Ribeiro RA, Hungria M. Genetic diversity of elite rhizobial strains of subtropical and tropical legumes based on the 16S rRNA and glnII genes. World J Microbiol Biotechnol 2010; 26:1291–1302 [View Article][PubMed]
    [Google Scholar]
  6. Perrineau MM, Le Roux C, de Faria SM, de Carvalho Balieiro F, Galiana A et al. Genetic diversity of symbiotic Bradyrhizobium elkanii populations recovered from inoculated and non-inoculated Acacia mangium field trials in Brazil. Syst Appl Microbiol 2011; 34:376–384 [View Article][PubMed]
    [Google Scholar]
  7. Delamuta JR, Ribeiro RA, Ormeño-Orrillo E, Melo IS, Martínez-Romero E et al. Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. Int J Syst Evol Microbiol 2013; 63:3342–3351 [View Article][PubMed]
    [Google Scholar]
  8. Delamuta JR, Ribeiro RA, Ormeño-Orrillo E, Parma MM, Melo IS et al. Bradyrhizobium tropiciagri sp. nov. and Bradyrhizobium embrapense sp. nov., nitrogen-fixing symbionts of tropical forage legumes. Int J Syst Evol Microbiol 2015; 65:4424–4433 [View Article][PubMed]
    [Google Scholar]
  9. Delamuta JR, Ribeiro RA, Araújo JL, Rouws LF, Zilli et al. Bradyrhizobium stylosanthis sp. nov., comprising nitrogen-fixing symbionts isolated from nodules of the tropical forage legume Stylosanthes spp. Int J Syst Evol Microbiol 2016; 66:3078–3087 [View Article][PubMed]
    [Google Scholar]
  10. Zilli JE, Baraúna AC, da Silva K, de Meyer SE, Farias EN et al. Bradyrhizobium neotropicale sp. nov., isolated from effective nodules of Centrolobium paraense. Int J Syst Evol Microbiol 2014; 64:3950–3957 [View Article][PubMed]
    [Google Scholar]
  11. Azarias Guimarães A, Florentino LA, Alves Almeida K, Lebbe L, Barroso Silva K et al. High diversity of Bradyrhizobium strains isolated from several legume species and land uses in brazilian tropical ecosystems. Syst Appl Microbiol 2015; 38:433–441 [View Article][PubMed]
    [Google Scholar]
  12. Helene LC, Delamuta JR, Ribeiro RA, Ormeño-Orrillo E, Rogel MA et al. Bradyrhizobium viridifuturi sp. nov., encompassing nitrogen-fixing symbionts of legumes used for green manure and environmental services. Int J Syst Evol Microbiol 2015; 65:4441–4448 [View Article][PubMed]
    [Google Scholar]
  13. Parker MA. The spread of Bradyrhizobium lineages across host legume clades: from Abarema to Zygia. Microb Ecol 2015; 69:630–640 [View Article][PubMed]
    [Google Scholar]
  14. Fonseca MB, Peix A, de Faria SM, Mateos PF, Rivera LP et al. Nodulation in Dimorphandra wilsonii rizz. (Caesalpinioideae), a threatened species native to the Brazilian cerrado. PLoS One 2012; 7:e49520 [View Article][PubMed]
    [Google Scholar]
  15. Germano MG, Menna P, Mostasso FL, Hungria M. RFLP analysis of the rRNA operon of a Brazilian collection of bradyrhizobial strains from 33 legume species. Int J Syst Evol Microbiol 2006; 56:217–229 [View Article][PubMed]
    [Google Scholar]
  16. Rivas R, Martens M, de Lajudie P, Willems A. Multilocus sequence analysis of the genus Bradyrhizobium. Syst Appl Microbiol 2009; 32:101–110 [View Article][PubMed]
    [Google Scholar]
  17. Durán D, Rey L, Mayo J, Zúñiga-Dávila D, Imperial J et al. Bradyrhizobium paxllaeri sp. nov. and Bradyrhizobium icense sp. nov., nitrogen-fixing rhizobial symbionts of Lima bean (Phaseolus lunatus L.) in Peru. Int J Syst Evol Microbiol 2014; 64:2072–2078 [View Article][PubMed]
    [Google Scholar]
  18. Durán D, Rey L, Navarro A, Busquets A, Imperial J et al. Bradyrhizobium valentinum sp. nov., isolated from effective nodules of Lupinus mariae-josephae, a lupine endemic of basic-lime soils in eastern spain. Syst Appl Microbiol 2014; 37:336–341 [View Article][PubMed]
    [Google Scholar]
  19. Yao Y, Sui XH, Zhang XX, Wang ET, Chen WX. Bradyrhizobium erythrophlei sp. nov. and Bradyrhizobium ferriligni sp. nov., isolated from effective nodules of Erythrophleum fordii. Int J Syst Evol Microbiol 2015; 65:1831–1837 [View Article][PubMed]
    [Google Scholar]
  20. Menna P, Hungria M. Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium: supporting evidence for the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer. Int J Syst Evol Microbiol 2011; 61:3052–3067 [View Article][PubMed]
    [Google Scholar]
  21. Parker MA, Rousteau A. Mosaic origins of Bradyrhizobium legume symbionts on the Caribbean island of Guadeloupe. Mol Phylogenet Evol 2014; 77:110–115 [View Article][PubMed]
    [Google Scholar]
  22. Zhang XX, Guo HJ, Wang R, Sui XH, Zhang YM et al. Genetic divergence of Bradyrhizobium strains nodulating soybeans as revealed by multilocus sequence analysis of genes inside and outside the symbiosis island. Appl Environ Microbiol 2014; 80:3181–3190 [View Article][PubMed]
    [Google Scholar]
  23. de Faria SM, de Lima HC, Franco AA, Mucci ESF, Sprent JI. Nodulation of legume trees from south east Brazil. Plant Soil 1987; 99:347–356 [View Article]
    [Google Scholar]
  24. Franco AA, de Faria SM. The contribution of N2-fixing tree legumes to land reclamation and sustainability in the tropics. Soil Biol Biochem 1997; 29:897–903 [View Article]
    [Google Scholar]
  25. Hungria M, O’Hara GW, Zilli JE, Araujo RS, Deaker R et al. Isolation and growth or rhizobia. In Howieson JG, Dilworth JG. (editors) Working with Rhizobia Canberra, Australia: ACIAR; 2016 pp. 39–60
    [Google Scholar]
  26. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  27. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526[PubMed]
    [Google Scholar]
  28. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  30. Ahnia H, Boulila F, Boulila A, Boucheffa K, Durán D et al. Cytisus villosus from northeastern algeria is nodulated by genetically diverse Bradyrhizobium strains. Antonie Leeuwenhoek 2014; 105:1121–1129 [View Article][PubMed]
    [Google Scholar]
  31. Guerrouj K, Ruíz-Díez B, Chahboune R, Ramírez-Bahena MH, Abdelmoumen H et al. Definition of a novel symbiovar (sv. retamae) within Bradyrhizobium retamae sp. nov., nodulating Retama sphaerocarpa and Retama monosperma. Syst Appl Microbiol 2013; 36:218–223 [View Article][PubMed]
    [Google Scholar]
  32. Grönemeyer JL, Hurek T, Bünger W, Reinhold-Hurek B. Bradyrhizobium vignae sp. nov., a nitrogen-fixing symbiont isolated from effective nodules of Vigna and Arachis. Int J Syst Evol Microbiol 2016; 66:62–69 [View Article][PubMed]
    [Google Scholar]
  33. Ramírez-Bahena MH, Flores-Félix JD, Chahboune R, Toro M, Velázquez E et al. Bradyrhizobium centrosemae (symbiovar centrosemae) sp. nov., Bradyrhizobium americanum (symbiovar phaseolarum) sp. nov. and a new symbiovar (tropici) of Bradyrhizobium viridifuturi establish symbiosis with Centrosema species native to America. Syst Appl Microbiol 2016; 39:378–383 [View Article][PubMed]
    [Google Scholar]
  34. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  35. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  36. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article][PubMed]
    [Google Scholar]
  37. Xu LM, Ge C, Cui Z, Li J, Fan H. Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int J Syst Bacteriol 1995; 45:706–711 [View Article][PubMed]
    [Google Scholar]
  38. Kaschuk G, Hungria M, Andrade DS, Campo RJ. Genetic diversity of rhizobia associated with common bean (Phaseolus vulgaris L.) grown under no-tillage and conventional systems in Southern Brazil. Applied Soil Ecology 2006; 32:210–220 [View Article]
    [Google Scholar]
  39. Sneath PHA, Sokal RR. Numerical Taxonomy: The Principles and Practice of Numerical Classification San Francisco, USA: W. H. Freeman and Company; 1973 pp. 573
    [Google Scholar]
  40. Jaccard P. The distribution of the flora in the alpine zone. New Phytologist 1912; 11:37–50 [View Article]
    [Google Scholar]
  41. Tighe SW, de Lajudie P, Dipietro K, Lindström K, Nick G et al. Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the sherlock microbial identification system. Int J Syst Evol Microbiol 2000; 50:787–801 [View Article][PubMed]
    [Google Scholar]
  42. Hungria M, Chueire Lı́gia Maria de O, Coca RG, Megı́as M. Preliminary characterization of fast growing strains isolated from soyabean nodules in Brazil. Soil Biol Biochem 2001; 33:1349–1361 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.001870
Loading
/content/journal/ijsem/10.1099/ijsem.0.001870
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error