1887

Abstract

A Gram-staining-negative, rod-shaped, motile bacterium, designated WD12, was isolated from a rotten tree at Chungbuk National University, South Korea. WD12 grew optimally at 30–37 °C and pH 7.0–7.5 and could assimilate arbutin and potassium-5-ketogluconate. The major cellular fatty acid were iso-C16 : 0, C16 : 0, cyclo C17 : 0, iso-C15 : 0, summed features 3 (comprising C16 : 1ω7c/iso-C15 : 0 2-OH) and anteiso-C15 : 0. The major polar lipids consisted of phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The major respiratory quinone was ubiquinone-8 (Q-8). The G+C content of the genomic DNA was 69.1 %. The results of phylogenetic and comparative analysis based on the 16S rRNA gene sequence indicated that WD12 formed a tight phylogenetic lineage with Pseudoxanthomonas mexicana AMX 26B and Pseudoxanthomonas japonensis 12-3 of the the genus Pseudoxanthomonas in the family Xanthomonadaceae . Sequence similarity to other members of the genus Pseudoxanthomonas ranged from 98.6 % ( P. mexicana AMX 26B) to 95.1 % ( Pseudoxanthomonas taiwanensis CB-226). DNA–DNA relatedness between WD12 and eight type strains of species of the genus Pseudoxanthomonas showing more than 97 % 16S rRNA sequence similarity were 6±0–26±1 %. On the basis of the evidence from this polyphasic study, WD12 represents a novel species of the genus Pseudoxanthomonas , for which the name Pseudoxanthomonas putridarboris sp. nov. is proposed. The type strain is WD12 (=KACC 15045=LMG 25968).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001867
2017-06-09
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/6/1807.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001867&mimeType=html&fmt=ahah

References

  1. Saddler GS, Bradbury JF. Family I. Xanthomonadaceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed.vol. 2 New York: Springer; 2005; pp.63 (The Proteobacteria), part B (The Gammaproteobacteria)[CrossRef]
    [Google Scholar]
  2. Finkmann W, Altendorf K, Stackebrandt E, Lipski A. Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 2000;50:273–282 [CrossRef][PubMed]
    [Google Scholar]
  3. Thierry S, Macarie H, Iizuka T, Geissdörfer W, Assih EA et al. Pseudoxanthomonas mexicana sp. nov. and Pseudoxanthomonas japonensis sp. nov., isolated from diverse environments, and emended descriptions of the genus Pseudoxanthomonas Finkmann et al. 2000 and of its type species. Int J Syst Evol Microbiol 2004;54:2245–2255 [CrossRef][PubMed]
    [Google Scholar]
  4. Lee DS, Ryu SH, Hwang HW, Kim YJ, Park M et al. Pseudoxanthomonas sacheonensis sp. nov., isolated from BTEX-contaminated soil in Korea, transfer of Stenotrophomonas dokdonensis Yoon et al. 2006 to the genus Pseudoxanthomonas as Pseudoxanthomonas dokdonensis comb. nov. and emended description of the genus Pseudoxanthomonas. Int J Syst Evol Microbiol 2008;58:2235–2240 [CrossRef][PubMed]
    [Google Scholar]
  5. Euzéby JP. List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol 1997;47:590–592 List of Prokaryotic names with Standing in Nomenclaturehttp://www.bacterio.net [CrossRef][PubMed]
    [Google Scholar]
  6. Cho W-D, Lee J-K, Lim C-S, Park A-R, Oh Y-S et al. Isolation of Pseudoxanthomonas sp. W12 and WD32 producing extracellular protease. The Kor J of Microbiol 2010;46:63–67
    [Google Scholar]
  7. Oh YS, Lim HJ, Cha IT, Im WT, Yoo JS et al. Roseovarius halotolerans sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2009;59:2718–2723 [CrossRef][PubMed]
    [Google Scholar]
  8. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16s ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  9. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  10. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  11. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  12. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  14. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  16. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  17. Buck JD. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 1982;44:992–993[PubMed]
    [Google Scholar]
  18. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–655
    [Google Scholar]
  19. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  20. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996;42:457–469 [CrossRef]
    [Google Scholar]
  21. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  22. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207[CrossRef]
    [Google Scholar]
  23. Yang DC, Im WT, Kim MK, Lee ST. Pseudoxanthomonas koreensis sp. nov. and Pseudoxanthomonas daejeonensis sp. nov. Int J Syst Evol Microbiol 2005;55:787–791 [CrossRef][PubMed]
    [Google Scholar]
  24. Yoon JH, Kang SJ, Oh HW, Oh TK. Stenotrophomonas dokdonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2006;56:1363–1367 [CrossRef][PubMed]
    [Google Scholar]
  25. Kim SJ, Ahn JH, Weon HY, Lim JM, Kim SG et al. Pseudoxanthomonas sangjuensis sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol 2015;65:3170–3174 [CrossRef][PubMed]
    [Google Scholar]
  26. Kumari K, Sharma P, Tyagi K, Lal R. Pseudoxanthomonas indica sp. nov., isolated from a hexachlorocyclohexane dumpsite. Int J Syst Evol Microbiol 2011;61:2107–2111 [CrossRef][PubMed]
    [Google Scholar]
  27. Li D, Pang H, Sun L, Fan J, Li Y et al. Pseudoxanthomonas wuyuanensis sp. nov., isolated from saline–alkali soil. Int J Syst Evol Microbiol 2014;64:799–804 [CrossRef][PubMed]
    [Google Scholar]
  28. Zhang L, Wei L, Zhu L, Li C, Wang Y et al. Pseudoxanthomonas gei sp. nov., a novel endophytic bacterium isolated from the stem of Geum aleppicum. Antonie van Leeuwenhoek 2014;105:653–661 [CrossRef][PubMed]
    [Google Scholar]
  29. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  30. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  31. Wayne LG, Brenner DJ, Colwell RR. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464[CrossRef]
    [Google Scholar]
  32. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001867
Loading
/content/journal/ijsem/10.1099/ijsem.0.001867
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error