1887

Abstract

A slightly yellow-pigmented, Gram-stain-negative, rod-shaped bacterium, strain IMT-305, was isolated from soil in Alabama, USA. Phylogenetic analysis based on the nearly full-length 16S rRNA gene sequence placed the strain in between the genera and with highest 16S rRNA gene sequence similarity to the type strain of (97.5 %) and (97.4 %). The genomic G+C content of strain IMT-305 was 63.9 mol%. The main cellular fatty acids were Cω7, C cyclo, C and C 7/iso-C 2-OH (detected as summed feature 3). The polyamine pattern of strain IMT-305 contained the major compound putrescine and the betaproteobacterial diagnostic 2-hydroxyputrescine and the major respiratory quinone was ubiquinone Q-8. Predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylserine, an unidentified aminolipid, an unidentified aminophospholipid and an unidentified lipid lacking any functional group. Based on phylogenetic, chemotaxonomic and phenotypic analyses a novel species within a new genus, gen. nov., sp. nov., is proposed. The type strain of is IMT-305 (=DSM 100048=CIP 110902=LMG 28740=CCM 8599).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001852
2017-06-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/6/1740.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001852&mimeType=html&fmt=ahah

References

  1. Kim YJ, Kim MK, Im WT, Srinivasan S, Yang DC. Parapusillimonas granuli gen. nov., sp. nov., isolated from granules from a wastewater-treatment bioreactor. Int J Syst Evol Microbiol 2010;60:1401–1406 [CrossRef][PubMed]
    [Google Scholar]
  2. Vaz-Moreira I, Figueira V, Lopes AR, de Brandt E, Vandamme P et al. Candidimonas nitroreducens gen. nov., sp. nov. and Candidimonas humi sp. nov., isolated from sewage sludge compost. Int J Syst Evol Microbiol 2011;61:2238–2246 [CrossRef][PubMed]
    [Google Scholar]
  3. Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  4. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil Bacteria. Microb Ecol 1991;21:227–251 [CrossRef][PubMed]
    [Google Scholar]
  5. Kämpfer P. Evaluation of the Titertek-Enterobac-Automated system (TTE-AS) for identification of members of the family Enterobacteriaceae. Zentralbl Bakteriol 1990;273:164–172 [CrossRef][PubMed]
    [Google Scholar]
  6. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, DC 1994; pp.607–654
    [Google Scholar]
  7. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  8. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991
    [Google Scholar]
  9. Brosius J, Dull TJ, Sleeter DD, Noller HF. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 1981;148:107–127 [CrossRef]
    [Google Scholar]
  10. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  11. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  12. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  13. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  14. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22:2688–2690 [CrossRef][PubMed]
    [Google Scholar]
  15. Felsenstein J. PHYLIP (Phylogeny Inference Package) Version 3.6 Distributed by the author University of Washington, Seattle, Department of Genome Sciences 2005
    [Google Scholar]
  16. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  17. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013;195:413–418 [CrossRef][PubMed]
    [Google Scholar]
  18. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  19. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002;4:770–773 [CrossRef][PubMed]
    [Google Scholar]
  20. Pitcher DG, Saunders NA, Owen RJ. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 1989;8:151–156 [CrossRef]
    [Google Scholar]
  21. Glaeser SP, Falsen E, Martin K, Kämpfer P. Alicyclobacillus consociatus sp. nov., isolated from a human clinical specimen. Int J Syst Evol Microbiol 2013;63:3623–3627 [CrossRef][PubMed]
    [Google Scholar]
  22. Zhang DC, Busse HJ, Wieser C, Liu HC, Zhou YG et al. Candidimonas bauzanensis sp. nov., isolated from soil, and emended description of the genus Candidimonas Vaz-Moreira et al. 2011. Int J Syst Evol Microbiol 2012;62:2084–2089 [CrossRef][PubMed]
    [Google Scholar]
  23. Felföldi T, Vengring A, Kéki Z, Márialigeti K, Schumann P et al. Eoetvoesia caeni gen. nov., sp. nov., isolated from an activated sludge system treating coke plant effluent. Int J Syst Evol Microbiol 2014;64:1920–1925 [CrossRef][PubMed]
    [Google Scholar]
  24. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  25. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  26. Altenburgera P, Kämpferb P, Makristathisc A, Lubitza W, Bussea H-J. Classification of Bacteria isolated from a medieval wall painting. J Biotechnol 1996;47:39–52 [CrossRef]
    [Google Scholar]
  27. Stolz A, Busse HJ, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007;57:572–576 [CrossRef][PubMed]
    [Google Scholar]
  28. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the proteobacteria. Syst Appl Microbiol 1988;11:1–8 [CrossRef]
    [Google Scholar]
  29. Schumann P. Peptidoglykan structure. In Rainey FA, Oren A. (editors) Methods in Microbiology (Taxonomy of Prokaryotes)vol. 38 London: Academic Press; 2011; pp.101–129
    [Google Scholar]
  30. Altenburger P, Kampfer P, Akimov VN, Lubit W, Busse H-J. Polyamine distribution in actinomycetes with group B peptidoglycan and species of the genera Brevibacterium, Corynebacterium, and Tsukamurella. Int J Syst Bacteriol 1997;47:270–277 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001852
Loading
/content/journal/ijsem/10.1099/ijsem.0.001852
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error