1887

Abstract

Two strains of Gram-stain-positive, facultatively anaerobic, non-spore-forming short rods (VUL7 and VUL8) were isolated from rectal swabs of Old World vultures, namely Gyps himalayensis, in Tibet-Qinghai Plateau, China. Optimal growth occurred at 37 °C, pH 6–7, with 1 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences classified the two strains to the genus Actinomyces , with highest 16S rRNA gene sequence similarity (95 %) to type strains of Actinomyces haliotis , Actinomyces radicidentis and Actinomyces urogenitalis . The major cellular fatty acids were C18 : 1ω9c and C16 : 0. MK-10(H4) was the major respiratory quinone. The genomic DNA G+C content of the isolate was 54.4 mol%. DNA–DNA hybridization values with the most closely related species of the genus Actinomyces was 24.6 %. The two strains can be differentiated from the most closely related species such as A. haliotis , A. radicidentis, A. graevenitzii and A. urogenitalis by a list of carbohydrate fermentations and enzyme activities. On the basis of physiological, biochemical and phylogenetic analysis, strains VUL7 and VUL8 represent novel species of the genus Actinomyces , for which the name Actinomyces vulturis sp. nov. is proposed. The type strain is VUL7 (=CGMCC 4.7366=DSM 103437).

Erratum
This article contains a correction applying to the following content:
Corrigendum: Actinomyces vulturis sp. nov., isolated from Gyps himalayensis
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001851
2017-06-20
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/6/1720.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001851&mimeType=html&fmt=ahah

References

  1. Schaal KP.Genus Actinomyces. In Sneath PHA, Mair NS, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 2 Baltimore: Williams & Wilkins; 1986; pp.1383–1418
    [Google Scholar]
  2. Funke G, Englert R, Frodl R, Bernard KA, Stenger S. Actinomyces hominis sp. nov., isolated from a wound swab. Int J Syst Evol Microbiol 2010;60:1678–1681 [CrossRef][PubMed]
    [Google Scholar]
  3. Hall V, Collins MD, Hutson RA, Inganäs E, Falsen E et al. Actinomyces oricola sp. nov., from a human dental abscess. Int J Syst Evol Microbiol 2003;53:1515–1518 [CrossRef][PubMed]
    [Google Scholar]
  4. Hijazin M, Alber J, Lämmler C, Kämpfer P, Glaeser SP et al. Actinomyces weissii sp. nov., isolated from dogs. Int J Syst Evol Microbiol 2012;62:1755–1760 [CrossRef][PubMed]
    [Google Scholar]
  5. Hoyles L, Pascual C, Falsen E, Foster G, Grainger JM et al. Actinomyces marimammalium sp. nov., from marine mammals. Int J Syst Evol Microbiol 2001;51:151–156 [CrossRef][PubMed]
    [Google Scholar]
  6. Hyun DW, Shin NR, Kim MS, Kim PS, Kim JY et al. Actinomyces haliotis sp. nov., a bacterium isolated from the gut of an abalone, Haliotis discus hannai. Int J Syst Evol Microbiol 2014;64:456–461 [CrossRef][PubMed]
    [Google Scholar]
  7. Renvoise A, Raoult D, Roux V. Actinomyces timonensis sp. nov., isolated from a human clinical osteo-articular sample. Int J Syst Evol Microbiol 2010;60:1516–1521 [CrossRef][PubMed]
    [Google Scholar]
  8. Bittar F, Keita MB, Lagier JC, Peeters M, Delaporte E et al. Gorilla gorilla gorilla gut: a potential reservoir of pathogenic bacteria as revealed using culturomics and molecular tools. Sci Rep 2014;4:7174 [CrossRef][PubMed]
    [Google Scholar]
  9. Razzauti M, Galan M, Bernard M, Maman S, Klopp C et al. A comparison between transcriptome sequencing and 16S metagenomics for detection of bacterial pathogens in wildlife. PLoS Negl Trop Dis 2015;9:e0003929 [CrossRef][PubMed]
    [Google Scholar]
  10. Lu X, Ke D, Zeng X, Gong G, Ci R. Status, ecology, and conservation of the Himalayan griffon Gyps himalayensis (Aves, Accipitridae) in the Tibetan Plateau. Ambio 2009;38:166–173 [CrossRef]
    [Google Scholar]
  11. Satheesan S. The role of vultures in the disposal of human corpses in India and Tibet. Vulture News 1998;39:32–33
    [Google Scholar]
  12. Meng X, Lu S, Yang J, Jin D, Wang X et al. Metataxonomics reveal vultures as a reservoir for Clostridium perfringens. Emerg Microbes Infect 2017; In press
    [Google Scholar]
  13. Paek J, Lee MH, Kim BC, Sang BI, Paek WK et al. Clostridium vulturis sp. nov., isolated from the intestine of the cinereous vulture (Aegypius monachus). Antonie Van Leeuwenhoek 2014;106:577–583 [CrossRef][PubMed]
    [Google Scholar]
  14. Panangala VS, Stringfellow JS, Dybvig K, Woodard A, Sun F et al. Mycoplasma corogypsi sp. nov., a new species from the footpad abscess of a black vulture, Coragyps atratus. Int J Syst Bacteriol 1993;43:585–590 [CrossRef][PubMed]
    [Google Scholar]
  15. Roggenbuck M, Bærholm Schnell I, Blom N, Bælum J, Bertelsen MF et al. The microbiome of new world vultures. Nat Commun 2014;5:5498 [CrossRef][PubMed]
    [Google Scholar]
  16. Kerr KCR, Stoeckle MY, Dove CJ, Weigt LA, Francis CM et al. Comprehensive DNA barcode coverage of North American birds. Mol Ecol Notes 2007;7:535–543 [CrossRef][PubMed]
    [Google Scholar]
  17. Collins MD, Hoyles L, Kalfas S, Sundquist G, Monsen T et al. Characterization of Actinomyces isolates from infected root canals of teeth: description of Actinomyces radicidentis sp. nov. J Clin Microbiol 2000;38:3399–3403[PubMed]
    [Google Scholar]
  18. Nikolaitchouk N, Hoyles L, Falsen E, Grainger JM, Collins MD. Characterization of Actinomyces isolates from samples from the human urogenital tract: description of Actinomyces urogenitalis sp. nov. Int J Syst Evol Microbiol 2000;50:1649–1654 [CrossRef][PubMed]
    [Google Scholar]
  19. Ramos CP, Falsen E, Alvarez N, Akervall E, Sjödén B et al. Actinomyces graevenitzii sp. nov., isolated from human clinical specimens. Int J Syst Bacteriol 1997;47:885–888 [CrossRef][PubMed]
    [Google Scholar]
  20. Manual MO. Sherlock Microbial Identification System Version 4.5 Newark DE: MIDI, Inc; 2002
    [Google Scholar]
  21. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996;47:39–52 [CrossRef]
    [Google Scholar]
  22. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981;45:316[PubMed]
    [Google Scholar]
  23. Collins MD, Jones D. A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol 1981;51:129–134 [CrossRef][PubMed]
    [Google Scholar]
  24. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York: Wiley and Sons; 1991; pp.115–175
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  26. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003;52:696–704 [CrossRef][PubMed]
    [Google Scholar]
  27. Kolaczkowski B, Thornton JW. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 2004;431:980–984 [CrossRef][PubMed]
    [Google Scholar]
  28. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120[PubMed][CrossRef]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:1 [CrossRef][PubMed]
    [Google Scholar]
  30. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  31. Henssge U, Do T, Radford DR, Gilbert SC, Clark D et al. Emended description of Actinomyces naeslundii and descriptions of Actinomyces oris sp. nov. and Actinomyces johnsonii sp. nov., previously identified as Actinomyces naeslundii genospecies 1, 2 and WVA 963. Int J Syst Evol Microbiol 2009;59:509–516 [CrossRef][PubMed]
    [Google Scholar]
  32. Auch AF, Von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010;2:117–134 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001851
Loading
/content/journal/ijsem/10.1099/ijsem.0.001851
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error