1887

Abstract

A novel anaerobic, hyperthermophilic archaeon was isolated from a mud volcano in the Salton Sea geothermal system in southern California, USA. The isolate, named strain 521, grew optimally at 90 °C, at pH 5.5–7.3 and with 0–2.0 % (w/v) NaCl, with a generation time of 10 h under optimal conditions. Cells were rod-shaped and non-motile, ranging from 2 to 7 µm in length. Strain 521 grew only in the presence of thiosulfate and/or Fe(III) (ferrihydrite) as terminal electron acceptors under strictly anaerobic conditions, and preferred protein-rich compounds as energy sources, although the isolate was capable of chemolithoautotrophic growth. 16S rRNA gene sequence analysis places this isolate within the crenarchaeal genus Pyrobaculum . To our knowledge, this is the first Pyrobaculum strain to be isolated from an anaerobic mud volcano and to reduce only either thiosulfate or ferric iron. An in silico genome-to-genome distance calculator reported <25 % DNA–DNA hybridization between strain 521 and eight other Pyrobaculum species. Due to its genotypic and phenotypic differences, we conclude that strain 521 represents a novel species, for which the name Pyrobaculum igneiluti sp. nov. is proposed. The type strain is 521 (=DSM 103086=ATCC TSD-56).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001850
2017-06-20
2019-08-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/6/1714.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001850&mimeType=html&fmt=ahah

References

  1. Adams MW. Enzymes and proteins from organisms that grow near and above 100 degrees C. Annu Rev Microbiol 1993;47:627–658 [CrossRef][PubMed]
    [Google Scholar]
  2. Pace NR. Origin of life–facing up to the physical setting. Cell 1991;65:531–533 [CrossRef][PubMed]
    [Google Scholar]
  3. Stetter KO. Hyperthermophilic procaryotes. FEMS Microbiol Rev 1996;18:149–158 [CrossRef]
    [Google Scholar]
  4. Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR. Microbiological evidence for Fe(III) reduction on early Earth. Nature 1998;395:65–67 [CrossRef][PubMed]
    [Google Scholar]
  5. Weber KA, Achenbach LA, Coates JD. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 2006;4:752–764 [CrossRef][PubMed]
    [Google Scholar]
  6. Baross JA, Hoffman SE. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig Life Evol Biosph 1985;15:327–345 [CrossRef]
    [Google Scholar]
  7. Slobodkin AI, Jeanthon C, L'Haridon S, Nazina T, Miroshnichenko M et al. Dissimilatory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of western Siberia. Curr Microbiol 1999;39:99–102 [CrossRef][PubMed]
    [Google Scholar]
  8. Huber R, Langworthy TA, König H, Thomm M, Woese CR et al. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 1986;144:324–333 [CrossRef]
    [Google Scholar]
  9. Ravot G, Ollivier B, Magot M, Patel BKC, Crolet JL et al. Thiosulfate reduction, an important physiological feature shared by members of the order thermotogales. Appl Env Microbiol 1995;61:2053–2055
    [Google Scholar]
  10. Svensen H, Karlsen DA, Sturz A, Backer-Owe K, Banks DA et al. Processes controlling water and hydrocarbon composition in seeps from the Salton Sea geothermal system, California, USA. Geology 2007;35:85–88 [CrossRef]
    [Google Scholar]
  11. Huber R, Kristjansson JK, Stetter KO. Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100 °C. Arch Microbiol 1987;149:95–101 [CrossRef]
    [Google Scholar]
  12. Slobodkina GB, Lebedinsky AV, Chernyh NA, Bonch-Osmolovskaya EA, Slobodkin AI. Pyrobaculum ferrireducens sp. nov., a hyperthermophilic Fe(III)-, selenate- and arsenate-reducing crenarchaeon isolated from a hot spring. Int J Syst Evol Microbiol 2015;65:851–856 [CrossRef][PubMed]
    [Google Scholar]
  13. Chan PP, Cozen AE, Lowe TM. Reclassification of Thermoproteus neutrophilus Stetter and Zillig 1989 as Pyrobaculum neutrophilum comb. nov. based on phylogenetic analysis. Int J Syst Evol Microbiol 2013;63:751–754 [CrossRef][PubMed]
    [Google Scholar]
  14. Fischer F, Zillig W, Stetter KO, Schreiber G. Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature 1983;301:511–513 [CrossRef][PubMed]
    [Google Scholar]
  15. Amo T, Paje ML, Inagaki A, Ezaki S, Atomi H et al. Pyrobaculum calidifontis sp. nov., a novel hyperthermophilic archaeon that grows in atmospheric air. Archaea 2002;1:113–121 [CrossRef][PubMed]
    [Google Scholar]
  16. Sako Y, Nunoura T, Uchida A. Pyrobaculum oguniense sp. nov., a novel facultatively aerobic and hyperthermophilic archaeon growing at up to 97 degrees C. Int J Syst Evol Microbiol 2001;51:303–309 [CrossRef][PubMed]
    [Google Scholar]
  17. Völkl P, Huber R, Drobner E, Rachel R, Burggraf S et al. Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Env Microbiol 1993;59:2918–2926
    [Google Scholar]
  18. Salman V, Amann R, Shub DA, Schulz-Vogt HN. Multiple self-splicing introns in the 16S rRNA genes of giant sulfur bacteria. Proc Natl Acad Sci USA 2012;109:4203–4208 [CrossRef][PubMed]
    [Google Scholar]
  19. Itoh T, Nomura N, Sako Y. Distribution of 16S rRNA introns among the family Thermoproteaceae and their evolutionary implications. Extremophiles 2003;7:229–233 [CrossRef][PubMed]
    [Google Scholar]
  20. Jay ZJ, Inskeep WP. The distribution, diversity, and importance of 16S rRNA gene introns in the order Thermoproteales. Biol Direct 2015;10:35 [CrossRef][PubMed]
    [Google Scholar]
  21. Wolin EA, Wolin MJ, Wolfe RS. Formation of methane by bacterial extracts. J Biol Chem 1963;238:5–9
    [Google Scholar]
  22. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation of a unique biological group. Microbiol Rev 1979;43:260–296[PubMed]
    [Google Scholar]
  23. Lovley D. Dissimilatory Fe(III)- and Mn(IV)- reducing prokaryotes. In Rosenberg E, DeLong EF, Stackerbrandt E, Lory S, Thompson F. (editors) Prokaryotes Prokaryotic Physiol Biochem, 4th ed. New Delhi, India: Springer-Verlag Berlin Heidelberg; 2013; pp.287–308
    [Google Scholar]
  24. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  25. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10:512–526[PubMed]
    [Google Scholar]
  26. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  27. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004;101:11030–11035 [CrossRef][PubMed]
    [Google Scholar]
  28. Tindall BJ, Kämpfer P, Euzéby JP, Oren A. Valid publication of names of prokaryotes according to the rules of nomenclature: past history and current practice. Int J Syst Evol Microbiol 2006;56:2715–2720 [CrossRef][PubMed]
    [Google Scholar]
  29. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010;2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  30. Auch AF, Klenk HP, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010;2:142–148 [CrossRef][PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  32. Boyd ES, Druschel GK. Involvement of intermediate sulfur species in biological reduction of elemental sulfur under acidic, hydrothermal conditions. Appl Env Microbiol 2013;79:2061–2068 [CrossRef]
    [Google Scholar]
  33. Eaton A, Clesceri L, Greenberg A, Franson M. (editors) Standard Methods for the Detection of Water and Wastewater, 15th ed. Washington, DC: American Public Health Association; 1981
    [Google Scholar]
  34. Riemer J, Hoepken HH, Czerwinska H, Robinson SR, Dringen R. Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal Biochem 2004;331:370–375 [CrossRef][PubMed]
    [Google Scholar]
  35. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010;60:249–266 [CrossRef][PubMed]
    [Google Scholar]
  36. Huber R, Sacher M, Vollmann A, Huber H, Rose D. Respiration of arsenate and selenate by hyperthermophilic archaea. Syst Appl Microbiol 2000;23:305–314 [CrossRef][PubMed]
    [Google Scholar]
  37. Macur RE, Jay ZJ, Taylor WP, Kozubal MA, Kocar BD et al. Microbial community structure and sulfur biogeochemistry in mildly-acidic sulfidic geothermal springs in Yellowstone National Park. Geobiology 2013;11:86–99 [CrossRef][PubMed]
    [Google Scholar]
  38. Feinberg LF, Srikanth R, Vachet RW, Holden JF. Constraints on anaerobic respiration in the hyperthermophilic Archaea Pyrobaculum islandicum and Pyrobaculum aerophilum. Appl Environ Microbiol 2008;74:396–402 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001850
Loading
/content/journal/ijsem/10.1099/ijsem.0.001850
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error