1887

Abstract

Five strains, designated WS 4672, WS 4998, WS 4992, WS 4997 and WS 5000, isolated from bovine raw milk formed two individual groups in a phylogenetic analysis. The most similar species on the basis of 16S rRNA gene sequences were Pseudomonas azotoformans IAM 1603, Pseudomonas gessardii CIP 105469 and Pseudomonas libanensis CIP 105460 showing 99.7–99.6 % similarity. Using rpoD gene sequences Pseudomonas veronii LMG 17761 (93.3 %) was most closely related to strain WS 4672 and Pseudomonas libanensis CIP 105460 to strain WS 4992 (93.3 %). The five strains could be differentiated from their closest relatives and from each other by phenotypic and chemotaxonomic characterization and ANIb values calculated from draft genome assemblies. ANIb values of strains WS 4992 and WS4671 to the closest relatives are lower than 90 %. The major cellular polar lipids of both strains are phosphatidylethanolamine, phosphatidylglycerol, a phospholipid and diphosphatidylglycerol, and their major quinone is Q-9. The DNA G+C content of strains WS 4992 and WS 4672 were 60.0  and 59.7  mol%, respectively. Based on these genotypic and phenotypic traits two novel species of the genus Pseudomonas are proposed: Pseudomonas lactis sp. nov. [with type strain WS 4992 (=DSM 29167=LMG 28435) and the additional strains WS 4997 and WS 5000], and Pseudomonas paralactis sp. nov. [with type strain WS 4672 (=DSM 29164=LMG 28439) and additional strain WS 4998].

Keyword(s): peptidase , Pseudomonas and raw milk
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001836
2017-06-14
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/6/1656.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001836&mimeType=html&fmt=ahah

References

  1. Migula W. Über ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1894;1:235–238 (in German)
    [Google Scholar]
  2. Euzéby JP. List of bacterial names with standing in nomenclature: a folder available on the Internet. Int J Syst Bacteriol 1997;47:590–592 [CrossRef][PubMed]
    [Google Scholar]
  3. Parte AC. LPSN - list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  4. Arslan S, Eyi A, Özdemir F. Spoilage potentials and antimicrobial resistance of Pseudomonas spp. isolated from cheeses. J Dairy Sci 2011;94:5851–5856 [CrossRef][PubMed]
    [Google Scholar]
  5. Ercolini D, Russo F, Blaiotta G, Pepe O, Mauriello G et al. Simultaneous detection of Pseudomonas fragi, P. lundensis, and P. putida from meat by use of a multiplex PCR assay targeting the carA gene. Appl Environ Microbiol 2007;73:2354–2359 [CrossRef][PubMed]
    [Google Scholar]
  6. Franzetti L, Scarpellini M. Characterisation of Pseudomonas spp. isolated from foods. Ann Microbiol 2007;57:39–47 [CrossRef]
    [Google Scholar]
  7. Tryfinopoulou P, Tsakalidou E, Nychas GJ. Characterization of Pseudomonas spp. associated with spoilage of gilt-head sea bream stored under various conditions. Appl Environ Microbiol 2002;68:65–72 [CrossRef][PubMed]
    [Google Scholar]
  8. Hantsis-Zacharov E, Halpern M. Culturable psychrotrophic bacterial communities in raw milk and their proteolytic and lipolytic traits. Appl Environ Microbiol 2007;73:7162–7168 [CrossRef][PubMed]
    [Google Scholar]
  9. Marchand S, Vandriesche G, Coorevits A, Coudijzer K, de Jonghe V et al. Heterogeneity of heat-resistant proteases from milk Pseudomonas species. Int J Food Microbiol 2009;133:68–77 [CrossRef][PubMed]
    [Google Scholar]
  10. Martins ML, Pinto CL, Rocha RB, de Araújo EF, Vanetti MC. Genetic diversity of Gram-negative, proteolytic, psychrotrophic bacteria isolated from refrigerated raw milk. Int J Food Microbiol 2006;111:144–148 [CrossRef][PubMed]
    [Google Scholar]
  11. Stoeckel M, Lidolt M, Achberger V, Glück C, Krewinkel M et al. Growth of Pseudomonas weihenstephanensis, Pseudomonas proteolytica and Pseudomonas sp. in raw milk: Impact of residual heat-stable enzyme activity on stability of UHT milk during shelf-life. Int Dairy J 2016;59:20–28 [CrossRef]
    [Google Scholar]
  12. von Neubeck M, Baur C, Krewinkel M, Stoeckel M, Kranz B et al. Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. Int J Food Microbiol 2015;211:57–65 [CrossRef][PubMed]
    [Google Scholar]
  13. Mulet M, Bennasar A, Lalucat J, García-Valdés E. An rpoD-based PCR procedure for the identification of Pseudomonas species and for their detection in environmental samples. Mol Cell Probes 2009;23:140–147 [CrossRef][PubMed]
    [Google Scholar]
  14. Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010;12:1513–1530 [CrossRef][PubMed]
    [Google Scholar]
  15. von Neubeck M, Huptas C, Glück C, Krewinkel M, Stoeckel M et al. Pseudomonas helleri sp. nov. and Pseudomonas weihenstephanensis sp. nov., isolated from raw cow's milk. Int J Syst Evol Microbiol 2016;66:1163–1173 [CrossRef][PubMed]
    [Google Scholar]
  16. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  17. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ et al. GenBank. Nucleic Acids Res 2013;41:D36–D42 [CrossRef][PubMed]
    [Google Scholar]
  18. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  19. Hall BG. Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 2013;30:1229–1235 [CrossRef][PubMed]
    [Google Scholar]
  20. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  21. Skerman VBD, Sneath PHA, McGowan V. Approved lists of bacterial names. Int J Syst Bacteriol 1980;30:225–420 [CrossRef]
    [Google Scholar]
  22. Verhille S, Baïda N, Dabboussi F, Hamze M, Izard D et al. Pseudomonas gessardii sp. nov. and Pseudomonas migulae sp. nov., two new species isolated from natural mineral waters. Int J Syst Bacteriol 1999;49:1559–1572 [CrossRef][PubMed]
    [Google Scholar]
  23. Behrendt U, Schumann P, Meyer JM, Ulrich A. Pseudomonas cedrina subsp. fulgida subsp. nov., a fluorescent bacterium isolated from the phyllosphere of grasses; emended description of Pseudomonas cedrina and description of Pseudomonas cedrina subsp. cedrina subsp. nov. Int J Syst Evol Microbiol 2009;59:1331–1335 [CrossRef][PubMed]
    [Google Scholar]
  24. Dabboussi F, Hamze M, Elomari M, Verhille S, Baida N et al. Taxonomic study of bacteria isolated from Lebanese spring waters: proposal for Pseudomonas cedrella sp. nov. and P. orientalis sp. nov. Res Microbiol 1999;150:303–316 [CrossRef][PubMed]
    [Google Scholar]
  25. Dabboussi F, Hamze M, Elomari M, Verhille S, Baida N et al. Pseudomonas libanensis sp. nov., a new species isolated from Lebanese spring waters. Int J Syst Bacteriol 1999;49:1091–1101 [CrossRef][PubMed]
    [Google Scholar]
  26. Behrendt U, Ulrich A, Schumann P. Fluorescent pseudomonads associated with the phyllosphere of grasses; Pseudomonas trivialis sp. nov., Pseudomonas poae sp. nov. and Pseudomonas congelans sp. nov. Int J Syst Evol Microbiol 2003;53:1461–1469 [CrossRef][PubMed]
    [Google Scholar]
  27. Elomari M, Coroler L, Hoste B, Gillis M, Izard D et al. DNA relatedness among Pseudomonas strains isolated from natural mineral waters and proposal of Pseudomonas veronii sp. nov. Int J Syst Bacteriol 1996;46:1138–1144 [CrossRef][PubMed]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  29. Tatusova T, Ciufo S, Fedorov B, O'Neill K, Tolstoy I. RefSeq microbial genomes database: new representation and annotation strategy. Nucleic Acids Res 2014;42:D553–D559 [CrossRef][PubMed]
    [Google Scholar]
  30. Moore EB, Tindall B, Martins Dos Santos VP, Pieper D, Ramos J-L et al. Nonmedical: Pseudomonas. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E et al. (editors) The Prokaryotes New York: Springer; 2006; pp.646–703 [CrossRef]
    [Google Scholar]
  31. Be'er A, Smith RS, Zhang HP, Florin EL, Payne SM et al. Paenibacillus dendritiformis bacterial colony growth depends on surfactant but not on bacterial motion. J Bacteriol 2009;191:5758–5764 [CrossRef][PubMed]
    [Google Scholar]
  32. Glück C, Rentschler E, Krewinkel M, Merz M, von Neubeck M et al. Thermostability of peptidases secreted by microorganisms associated with raw milk. Int Dairy J 2016;56:186–197 [CrossRef]
    [Google Scholar]
  33. Koka R, Weimer BC. Isolation and characterization of a protease from Pseudomonas fluorescens RO98. J Appl Microbiol 2000;89:280–288 [CrossRef][PubMed]
    [Google Scholar]
  34. Mccarthy CN, Woods RG, Beacham IR. Regulation of the aprX-lipA operon of Pseudomonas fluorescens B52: differential regulation of the proximal and distal genes, encoding protease and lipase, by ompR-envZ. FEMS Microbiol Lett 2004;241:243–248 [CrossRef][PubMed]
    [Google Scholar]
  35. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982;16:584–586[PubMed]
    [Google Scholar]
  36. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988;38:358–361 [CrossRef]
    [Google Scholar]
  37. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  38. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  39. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  40. Tindall BJ, Sikorski J, Smibert RM, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy C, Beveridge T, Breznak JA, Marzluf G, Schmidt TM, Snyder LR. and (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007; pp.330–393 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001836
Loading
/content/journal/ijsem/10.1099/ijsem.0.001836
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error