1887

Abstract

A Gram-stain-positive, motile and rod-shaped bacterium, designated strain LZ2, was isolated from a sample of orchard soil from Laizhou city, Shandong province, PR China. On the basis of 16S rRNA gene sequence analysis, strain LZ2 was closely related to members of the genus , sharing highest levels of sequence similarity with NCIMB 8841 (98.8 %), I80 (95.9 %). The value for the DNA-DNA relatedness between strain LZ2 and NCIMB 8841 was 39.8±1.7 %. Growth occurred at 10–44 °C (optimum, 30–35 °C), pH 5.0–11.0 (optimum pH 9.0–10.0); NaCl concentrations of up to 7.0 % (w/v) were tolerated. The dominant respiratory quinone was MK-7 and the G+C content was 39.2 mol%. The major fatty acids were anteiso-C and iso-C. The major polar lipids of strain LZ2 were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and an unidentified phospholipid. Based on phenotypic and chemotaxonomic characteristics, and phylogenetic data strain LZ2 represents a novel species of the genus , for which the name sp. nov. (type strain LZ2=KACC 18822=MCCC 1K03174) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001835
2017-07-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2104.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001835&mimeType=html&fmt=ahah

References

  1. Kluyver AJ, van Niel CB. Prospects for a natural classification of bacteria. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1936; 94:369–403
    [Google Scholar]
  2. Claus D, Fahmy F, Rolf HJ, Tosunoglu N. Sporosarcina halophila sp. nov., an obligate, slightly halophilic bacterium from salt marsh soils. Syst Appl Microbiol 1983; 4:496–506 [View Article][PubMed]
    [Google Scholar]
  3. Yoon JH, Lee KC, Weiss N, Kho YH, Kang KH et al. Sporosarcina aquimarina sp. nov., a bacterium isolated from seawater in Korea, and transfer of Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the genus Sporosarcina as Sporosarcina globispora comb. nov., Sporosarcina psychrophila comb. nov. and Sporosarcina pasteurii comb. nov., and emended description of th. Int J Syst Evol Microbiol 2001; 51:1079–1086 [View Article][PubMed]
    [Google Scholar]
  4. Reddy GS, Matsumoto GI, Shivaji S. Sporosarcina macmurdoensis sp. nov., from a cyanobacterial mat sample from a pond in the McMurdo dry valleys, Antarctica. Int J Syst Evol Microbiol 2003; 53:1363–1367 [View Article][PubMed]
    [Google Scholar]
  5. Kwon SW, Kim BY, Song J, Weon HY, Schumann P et al. Sporosarcina koreensis sp. nov. and Sporosarcina soli sp. nov., isolated from soil in Korea. Int J Syst Evol Microbiol 2007; 57:1694–1698 [View Article][PubMed]
    [Google Scholar]
  6. Krishnamurthi S, Bhattacharya A, Mayilraj S, Saha P, Schumann P et al. Description of Paenisporosarcina quisquiliarum gen. nov., sp. nov., and reclassification of Sporosarcina macmurdoensis Reddy et al. 2003 as Paenisporosarcina macmurdoensis comb. nov. Int J Syst Evol Microbiol 2009; 59:1364–1370 [View Article][PubMed]
    [Google Scholar]
  7. Tominaga T, An SY, Oyaizu H, Yokota A. Sporosarcina luteola sp. nov. isolated from soy sauce production equipment in Japan. J Gen Appl Microbiol 2009; 55:217–223 [View Article][PubMed]
    [Google Scholar]
  8. Kämpfer P, Falsen E, Lodders N, Schumann P. Sporosarcina contaminans sp. nov. and Sporosarcina thermotolerans sp. nov., two endospore-forming species. Int J Syst Evol Microbiol 2010; 60:1353–1357 [View Article][PubMed]
    [Google Scholar]
  9. Wolfgang WJ, Coorevits A, Cole JA, de Vos P, Dickinson MC et al. Sporosarcina newyorkensis sp. nov. from clinical specimens and raw cow's milk. Int J Syst Evol Microbiol 2012; 62:322–329 [View Article][PubMed]
    [Google Scholar]
  10. Zhang G, Ren H, Chen X, Zhang Y, Yang Y et al. Sporosarcina siberiensis sp. nov., isolated from the east siberian sea. Antonie van Leeuwenhoek 2014; 106:489–495 [View Article][PubMed]
    [Google Scholar]
  11. Zhang L, Wang Y, Dai J, Tang Y, Yang Q et al. Bacillus korlensis sp. nov., a moderately halotolerant bacterium isolated from a sand soil sample in China. Int J Syst Evol Microbiol 2009; 59:1787–1792 [View Article][PubMed]
    [Google Scholar]
  12. Dong X, Cai M. Manual of Systermatic and Determinative Bacteriology Beijing, China: Academic Press; 2001
    [Google Scholar]
  13. Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 2003; 55:541–555 [View Article][PubMed]
    [Google Scholar]
  14. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  16. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  17. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  19. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969 pp. 21–132 [CrossRef]
    [Google Scholar]
  20. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  21. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  22. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4:184–192 [View Article][PubMed]
    [Google Scholar]
  23. Jahnke K-D. BASIC computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 1992; 15:61–73 [View Article]
    [Google Scholar]
  24. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  25. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acid, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  26. Kates M. Techniques of Lipidology, 2nd rev ed. Amsterdam: Elsevier; 1986 pp. 106–107
    [Google Scholar]
  27. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  28. Nakagawa Y, Yamasato K. Phylogenetic diversity of the genus Cytophaga revealed by 16S rRNA sequencing and menaquinone analysis. J Gen Microbiol 1993; 139:1155–1161 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001835
Loading
/content/journal/ijsem/10.1099/ijsem.0.001835
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error