1887

Abstract

A Gram-stain-negative, non-motile, aerobic and coccoid or rod-shaped bacterium, designated GHTF-23, was isolated from a tidal flat of the South Sea, South Korea. GHTF-23 grew optimally at 37 °C, at pH 6.5–7.5 and in the presence of 2.0 % (w/v) NaCl. In the neighbour-joining phylogenetic tree based on 16S rRNA gene sequences, GHTF-23 fell within the clade comprising the type strains of species of the genus Microbulbifer . GHTF-23 exhibited 16S rRNA gene sequence similarities of 97.1–97.9 % to the type strains of Microbulbifer salipaludis , Microbulbifer hydrolyticus , Microbulbifer elongatus , Microbulbifer mangrovi and Microbulbifer yueqingensis and 94.5–96.8 % to the type strains of the other species of the genus Microbulbifer . GHTF-23 contained Q-8 as the predominant ubiquinone and iso-C15 : 0 and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) as the major fatty acids. The major polar lipids detected in GHTF-23 and M. hydrolyticus DSM 11525 were phosphatidylethanolamine, phosphatidylglycerol and one unidentified glycolipid. The DNA G+C content of GHTF-23 was 60.1 mol% and its mean DNA–DNA relatedness values with the type strains of M. salipaludis , M. hydrolyticus , M. elongatus , M. mangrovi and M. yueqingensis were 11–31 %. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that GHTF-23 is separated from species of the genus Microbulbifer with validly published names. On the basis of the data presented, GHTF-23 is considered to represent a novel species of the genus Microbulbifer , for which the name Microbulbifer aestuariivivenssp. nov. is proposed. The type strain is GHTF-23 (=KCTC 52569=NBRC 112533).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001831
2017-06-05
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1436.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001831&mimeType=html&fmt=ahah

References

  1. González JM, Mayer F, Moran MA, Hodson RE, Whitman WB. Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 1997;47:369–376 [CrossRef][PubMed]
    [Google Scholar]
  2. Parte AC. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  3. Camacho M, del Carmen Montero-Calasanz M, Redondo-Gómez S, Rodríguez-Llorente I, Schumann P et al. Microbulbifer rhizosphaerae sp. nov., isolated from the rhizosphere of the halophyte Arthrocnemum macrostachyum. Int J Syst Evol Microbiol 2016;66:1844–1850 [CrossRef][PubMed]
    [Google Scholar]
  4. Yoon JH, Kim IG, Shin DY, Kang KH, Park YH. Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 2003;53:53–57 [CrossRef][PubMed]
    [Google Scholar]
  5. Yoon JH, Kim IG, Oh TK, Park YH. Microbulbifer maritimus sp. nov., isolated from an intertidal sediment from the Yellow Sea, Korea. Int J Syst Evol Microbiol 2004;54:1111–1116 [CrossRef][PubMed]
    [Google Scholar]
  6. Yoon JH, Jung SY, Kang SJ, Oh TK. Microbulbifer celer sp. nov., isolated from a marine solar saltern of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2007;57:2365–2369 [CrossRef][PubMed]
    [Google Scholar]
  7. Miyazaki M, Nogi Y, Ohta Y, Hatada Y, Fujiwara Y et al. Microbulbifer agarilyticus sp. nov. and Microbulbifer thermotolerans sp. nov., agar-degrading bacteria isolated from deep-sea sediment. Int J Syst Evol Microbiol 2008;58:1128–1133 [CrossRef][PubMed]
    [Google Scholar]
  8. Jeong SH, Yang SH, Jin HM, Kim JM, Kwon KK et al. Microbulbifer gwangyangensis sp. nov. and Microbulbifer pacificus sp. nov., isolated from marine environments. Int J Syst Evol Microbiol 2013;63:1335–1341 [CrossRef][PubMed]
    [Google Scholar]
  9. Nishijima M, Takadera T, Imamura N, Kasai H, An KD et al. Microbulbifer variabilis sp. nov. and Microbulbifer epialgicus sp. nov., isolated from Pacific marine algae, possess a rod–coccus cell cycle in association with the growth phase. Int J Syst Evol Microbiol 2009;59:1696–1707 [CrossRef][PubMed]
    [Google Scholar]
  10. Baba A, Miyazaki M, Nagahama T, Nogi Y. Microbulbifer chitinilyticus sp. nov. and Microbulbifer okinawensis sp. nov., chitin-degrading bacteria isolated from mangrove forests. Int J Syst Evol Microbiol 2011;61:2215–2220 [CrossRef][PubMed]
    [Google Scholar]
  11. Vashist P, Nogi Y, Ghadi SC, Verma P, Shouche YS. Microbulbifer mangrovi sp. nov., a polysaccharide-degrading bacterium isolated from an Indian mangrove. Int J Syst Evol Microbiol 2013;63:2532–2537 [CrossRef][PubMed]
    [Google Scholar]
  12. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 2000;50:1563–1589 [CrossRef][PubMed]
    [Google Scholar]
  13. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014;64:2969–2974 [CrossRef][PubMed]
    [Google Scholar]
  14. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987;19:1–67[CrossRef]
    [Google Scholar]
  15. Barrow G I, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993;[CrossRef]
    [Google Scholar]
  16. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001;51:1997–2006 [CrossRef][PubMed]
    [Google Scholar]
  17. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963;85:1183–1184[PubMed]
    [Google Scholar]
  18. Yoon J-H, Kim H, Kim S-B, Kim H-J, Kim WY et al. Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 1996;46:502–505 [CrossRef]
    [Google Scholar]
  19. Yoon JH, Lee ST, Park YH. Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 1998;48:187–194 [CrossRef][PubMed]
    [Google Scholar]
  20. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  21. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207[CrossRef]
    [Google Scholar]
  22. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  23. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  24. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994; pp.121–161
    [Google Scholar]
  25. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  26. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  27. Tang SK, Wang Y, Cai M, Lou K, Mao PH et al. Microbulbifer halophilus sp. nov., a moderately halophilic bacterium from north-west China. Int J Syst Evol Microbiol 2008;58:2036–2040 [CrossRef][PubMed]
    [Google Scholar]
  28. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  29. Zhang DS, Huo YY, Xu XW, Wu YH, Wang CS et al. Microbulbifer marinus sp. nov. and Microbulbifer yueqingensis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2012;62:505–510 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001831
Loading
/content/journal/ijsem/10.1099/ijsem.0.001831
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error