1887

Abstract

Strain Hb3 was isolated from a tidal flat in Jeollabuk-do Gunsan, Republic of Korea. Cells were Gram-stain-negative, oxidase- and catalase-positive, rod-shaped and motile. The strain grew optimally at 25–35 °C, at pH 6.0–6.5 and with 3.0–10.0 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain Hb3 belonged to the genus Halomonas . Strain Hb3 was related most closely to Halomonas ventosae Al12 (98.6 % 16S rRNA gene sequence similarity), Halomonas denitrificans M29 (98.6 %) and Halomonas saccharevitans AJ275 (98.4 %). Moreover, multilocus sequence analysis using the gyrB, rpoD and secA genes supported the phylogenetic position of strain Hb3. The genomic G+C content of strain Hb3 was 67.9 mol%. DNA–DNA hybridization values for strain Hb3 versus H. ventosae Al12, H. denitrificans M29 and H. saccharevitans AJ275 were 38.0, 54.5 and 47.4 %, respectively. The major quinone was ubiquinone Q-9 and the major fatty acids were C18 : 1ω7c, summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c), C16 : 0 and C19 : 0 cyclo ω8c. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, amino lipid, six unidentified phospholipids and an unidentified lipid comprised the polar lipid profile. On the basis of the data presented in this report, strain Hb3 represents a novel species of the genus Halomonas . The name Halomonas aestuarii sp. nov. is proposed for this novel species. The type strain is Hb3 (=KCTC 52253=JCM 31415).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001824
2017-10-06
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4298.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001824&mimeType=html&fmt=ahah

References

  1. Vreeland R, Litchfield C, Martin E, Elliot E. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Evol Microbiol 1980; 30: 485– 495
    [Google Scholar]
  2. Amjres H, Béjar V, Quesada E, Abrini J, Llamas I. Halomonas rifensis sp. nov., an exopolysaccharide-producing, halophilic bacterium isolated from a solar saltern. Int J Syst Evol Microbiol 2011; 61: 2600– 2605 [CrossRef] [PubMed]
    [Google Scholar]
  3. Arenas M, Bañón PI, Copa-Patiño JL, Sánchez-Porro C, Ventosa A et al. Halomonas ilicicola sp. nov., a moderately halophilic bacterium isolated from a saltern. Int J Syst Evol Microbiol 2009; 59: 578– 582 [CrossRef] [PubMed]
    [Google Scholar]
  4. Lim JM, Yoon JH, Lee JC, Jeon CO, Park DJ et al. Halomonas koreensis sp. nov., a novel moderately halophilic bacterium isolated from a solar saltern in Korea. Int J Syst Evol Microbiol 2004; 54: 2037– 2042 [CrossRef] [PubMed]
    [Google Scholar]
  5. Boltianskaia YV, Kevbrin VV, Lysenko AM, Kolganova TV, Turova TP et al. Halomonas mongoliensis sp. nov. and Halomonas kenyensis sp. nov., new haloalkaliphilic denitrifiers capable of reducing N2O, isolated from soda lakes. Int J Syst Evol Microbiol 2007; 76: 739– 747 [CrossRef] [PubMed]
    [Google Scholar]
  6. Duckworth AW, Grant WD, Jones BE, Meijer D, Márquez MC et al. Halomonas magadii sp. nov., a new member of the genus Halomonas, isolated from a soda lake of the East African Rift Valley. Extremophiles 2000; 4: 53– 60 [CrossRef] [PubMed]
    [Google Scholar]
  7. Kim MS, Roh SW, Bae JW. Halomonas jeotgali sp. nov., a new moderate halophilic bacterium isolated from a traditional fermented seafood. Int J Syst Evol Microbiol 2010; 48: 404– 410
    [Google Scholar]
  8. Yoon JH, Lee KC, Kho YH, Kang KH, Kim CJ et al. Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2002; 52: 123– 130 [CrossRef] [PubMed]
    [Google Scholar]
  9. Chen C, Shi R, Liu BB, Zhang YJ, Sun HZ et al. Halomonas qijiaojingensis sp. nov. and Halomonas flava sp. nov., two moderately halophilic bacteria isolated from a salt lake. Antonie van Leeuwenhoek 2011; 100: 365– 373 [CrossRef] [PubMed]
    [Google Scholar]
  10. Guzmán D, Quillaguamán J, Muñoz M, Hatti-Kaul R. Halomonas andesensis sp. nov., a moderate halophile isolated from the saline lake Laguna Colorada in Bolivia. Int J Syst Evol Microbiol 2010; 60: 749– 753 [CrossRef] [PubMed]
    [Google Scholar]
  11. James SR, Dobson SJ, Franzmann PD, Mcmeekin TA. Halomonas meridiana, a new species of extremely halotolerant bacteria isolated from Antarctic saline lakes. Syst Appl Microbiol 1990; 13: 270– 278 [CrossRef]
    [Google Scholar]
  12. Wu YH, Xu XW, Huo YY, Zhou P, Zhu XF et al. Halomonas caseinilytica sp. nov., a halophilic bacterium isolated from a saline lake on the Qinghai-Tibet plateau, China. Int J Syst Evol Microbiol 2008; 58: 1259– 1262 [CrossRef] [PubMed]
    [Google Scholar]
  13. Wang YN, Cai H, Yu SL, Wang ZY, Liu J et al. Halomonas gudaonensis sp. nov., isolated from a saline soil contaminated by crude oil. Int J Syst Evol Microbiol 2007; 57: 911– 915 [CrossRef] [PubMed]
    [Google Scholar]
  14. Zhao B, Wang H, Mao X, Li R, Zhang YJ et al. Halomonas xianhensis sp. nov., a moderately halophilic bacterium isolated from a saline soil contaminated with crude oil. Int J Syst Evol Microbiol 2012; 62: 173– 178 [CrossRef] [PubMed]
    [Google Scholar]
  15. Dou G, He W, Liu H, Ma Y. Halomonas heilongjiangensis sp. nov., a novel moderately halophilic bacterium isolated from saline and alkaline soil. Antonie van Leeuwenhoek 2015; 108: 403– 413 [CrossRef] [PubMed]
    [Google Scholar]
  16. Li HB, Zhang LP, Chen SF. Halomonas korlensis sp. nov., a moderately halophilic, denitrifying bacterium isolated from saline and alkaline soil. Int J Syst Evol Microbiol 2008; 58: 2582– 2588 [CrossRef] [PubMed]
    [Google Scholar]
  17. Miao C, Jia F, Wan Y, Zhang W, Lin M et al. Halomonas huangheensis sp. nov., a moderately halophilic bacterium isolated from a saline-alkali soil. Int J Syst Evol Microbiol 2014; 64: 915– 920 [CrossRef] [PubMed]
    [Google Scholar]
  18. Kaye JZ, Márquez MC, Ventosa A, Baross JA. Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 2004; 54: 499– 511 [CrossRef] [PubMed]
    [Google Scholar]
  19. Bouchotroch S, Quesada E, del Moral A, Llamas I, Béjar V. Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 2001; 51: 1625– 1632 [CrossRef] [PubMed]
    [Google Scholar]
  20. Martínez-Checa F, Béjar V, Martínez-Cánovas MJ, Llamas I, Quesada E. Halomonas almeriensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium from Cabo de Gata, Almería, south-east Spain. Int J Syst Evol Microbiol 2005; 55: 2007– 2011 [CrossRef] [PubMed]
    [Google Scholar]
  21. Poli A, Esposito E, Orlando P, Lama L, Giordano A et al. Halomonas alkaliantarctica sp. nov., isolated from saline lake cape russell in Antarctica, an alkalophilic moderately halophilic, exopolysaccharide-producing bacterium. Syst Appl Microbiol 2007; 30: 31– 38 [CrossRef] [PubMed]
    [Google Scholar]
  22. Poli A, Nicolaus B, Denizci AA, Yavuzturk B, Kazan D. Halomonas smyrnensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 2013; 63: 10– 18 [CrossRef] [PubMed]
    [Google Scholar]
  23. González-Domenech CM, Martínez-Checa F, Quesada E, Béjar V. Halomonas fontilapidosi sp. nov., a moderately halophilic, denitrifying bacterium. Int J Syst Evol Microbiol 2009; 59: 1290– 1296 [CrossRef] [PubMed]
    [Google Scholar]
  24. Mormile MR, Romine MF, Garcia MT, Ventosa A, Bailey TJ et al. Halomonas campisalis sp. nov., a denitrifying, moderately haloalkaliphilic bacterium. Syst Appl Microbiol 1999; 22: 551– 558 [CrossRef] [PubMed]
    [Google Scholar]
  25. Qu L, Lai Q, Zhu F, Hong X, Zhang J et al. Halomonas daqiaonensis sp. nov., a moderately halophilic, denitrifying bacterium isolated from a littoral saltern. Int J Syst Evol Microbiol 2011; 61: 1612– 1616 [CrossRef] [PubMed]
    [Google Scholar]
  26. García MT, Mellado E, Ostos JC, Ventosa A. Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. Int J Syst Evol Microbiol 2004; 54: 1723– 1728 [CrossRef] [PubMed]
    [Google Scholar]
  27. Xu L, Xu XW, Meng FX, Huo YY, Oren A et al. Halomonas zincidurans sp. nov., a heavy-metal-tolerant bacterium isolated from the deep-sea environment. Int J Syst Evol Microbiol 2013; 63: 4230– 4236 [CrossRef] [PubMed]
    [Google Scholar]
  28. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: John Wiley; 1991; pp. 115– 175
    [Google Scholar]
  29. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173: 697– 703 [CrossRef] [PubMed]
    [Google Scholar]
  30. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
    [Google Scholar]
  31. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic Acids Symposium Series 1999; pp. 95– 98
    [Google Scholar]
  32. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876– 4882 [PubMed] [Crossref]
    [Google Scholar]
  33. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983; [Crossref]
    [Google Scholar]
  34. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  35. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20: 406– 416 [Crossref]
    [Google Scholar]
  36. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [PubMed] [Crossref]
    [Google Scholar]
  37. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  38. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 783– 791 [Crossref]
    [Google Scholar]
  39. de La Haba RR, Márquez MC, Papke RT, Ventosa A. Multilocus sequence analysis of the family Halomonadaceae. Int J Syst Evol Microbiol 2012; 62: 520– 538 [CrossRef] [PubMed]
    [Google Scholar]
  40. Kim KK, Jin L, Yang HC, Lee ST. Halomonas gomseomensis sp. nov., Halomonas janggokensis sp. nov., Halomonas salaria sp. nov. and Halomonas denitrificans sp. nov., moderately halophilic bacteria isolated from saline water. Int J Syst Evol Microbiol 2007; 57: 675– 681 [CrossRef] [PubMed]
    [Google Scholar]
  41. Martínez-Cánovas MJ, Quesada E, Llamas I, Béjar V. Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 2004; 54: 733– 737 [CrossRef] [PubMed]
    [Google Scholar]
  42. Xu XW, Wu YH, Zhou Z, Wang CS, Zhou YG et al. Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 2007; 57: 1619– 1624 [CrossRef] [PubMed]
    [Google Scholar]
  43. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4: 770– 773 [PubMed] [Crossref]
    [Google Scholar]
  44. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
    [Google Scholar]
  45. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical Note #101. Newark, DE: MIDI, Inc; 1990
    [Google Scholar]
  46. Komagata K, Suzuki K-I. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 207 [Crossref]
    [Google Scholar]
  47. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42: 457– 469 [Crossref]
    [Google Scholar]
  48. Smibert R, Krieg N. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  49. Koh HW, Hong H, Min UG, Kang MS, Kim SG et al. Rhodanobacter aciditrophus sp. nov., an acidophilic bacterium isolated from mine wastewater. Int J Syst Evol Microbiol 2015; 65: 4574– 4579 [CrossRef] [PubMed]
    [Google Scholar]
  50. Park SJ, Cha IT, Kim SJ, Shin KS, Hong Y et al. Salinisphaera orenii sp. nov., isolated from a solar saltern. Int J Syst Evol Microbiol 2012; 62: 1877– 1883 [CrossRef] [PubMed]
    [Google Scholar]
  51. Atlas RM. Handbook of Microbiological Media Washington, DC: CRC press; 2004; [Crossref]
    [Google Scholar]
  52. Gutiérrez MC, Castillo AM, Kamekura M, Ventosa A. Haloterrigena salina sp. nov., an extremely halophilic archaeon isolated from a salt lake. Int J Syst Evol Microbiol 2008; 58: 2880– 2884 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001824
Loading
/content/journal/ijsem/10.1099/ijsem.0.001824
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error