sp. nov., a chlorinated alkane-respiring bacterium isolated from contaminated groundwater Free

Abstract

A strictly anaerobic, Gram-stain-negative, non-spore-forming bacterium designated NSZ-14, isolated from contaminated groundwater in Louisiana (USA), was characterized using a polyphasic approach. Strain NSZ-14 reductively dehalogenated a variety of polychlorinated aliphatic alkanes, producing ethene from 1,2-dichloroethane, propene from 1,2-dichloropropane, a mixture of - and -1,2-dichloroethene from 1,1,2,2-tetrachloroethane, vinyl chloride from 1,1,2-trichloroethane and allyl chloride (3-chloro-1-propene) from 1,2,3-trichloropropane. Formate or hydrogen could both serve as electron donors. Dechlorination occurred between pH 5.5 and 7.5 and over a temperature range of 20–37 °C. Major cellular fatty acids included Cω9, C and C. 16S rRNA gene sequence-based phylogenetic analysis indicated that the strain clusters within the class of the phylum , most closely related to but distinct from type strains of the species (97.63 % similarity) and (95.05 %). A complete genome sequence determined for strain NSZ-14 revealed a DNA G+C content of 53.96 mol%, which was corroborated by HPLC (54.1±0.2 mol% G+C). Genome-wide comparisons based on average nucleotide identity by orthology and estimated DNA–DNA hybridization values combined with phenotypic and chemotaxonomic traits and phylogenetic analysis indicate that strain NSZ-14 represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is NSZ-14 (=HAMBI 3672=JCM 19277=VKM B-3058). An emended description of is also provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001819
2017-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1366.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001819&mimeType=html&fmt=ahah

References

  1. Moe WM, Yan J, Nobre MF, da Costa MS, Rainey FA. Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater. Int J Syst Evol Microbiol 2009; 59:2692–2697 [View Article][PubMed]
    [Google Scholar]
  2. Bowman KS, Nobre MF, da Costa MS, Rainey FA, Moe WM. Dehalogenimonas alkenigignens sp. nov., a chlorinated-alkane-dehalogenating bacterium isolated from groundwater. Int J Syst Evol Microbiol 2013; 63:1492–1498 [View Article][PubMed]
    [Google Scholar]
  3. Zehnder AJ, Wuhrmann K. Titanium (III) citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science 1976; 194:1165–1166 [View Article][PubMed]
    [Google Scholar]
  4. Li C, Moe WM. Assessment of microbial populations in methyl ethyl ketone degrading biofilters by denaturing gradient gel electrophoresis. Appl Microbiol Biotechnol 2004; 64:568–575 [View Article][PubMed]
    [Google Scholar]
  5. Duhamel M, Mo K, Edwards EA. Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Appl Environ Microbiol 2004; 70:5538–5545 [View Article][PubMed]
    [Google Scholar]
  6. Hendrickson ER, Payne JA, Young RM, Starr MG, Perry MP et al. Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl Environ Microbiol 2002; 68:485–495 [View Article][PubMed]
    [Google Scholar]
  7. Yan J, Rash BA, Rainey FA, Moe WM. Detection and quantification of Dehalogenimonas and "Dehalococcoides" populations via PCR-based protocols targeting 16S rRNA genes. Appl Environ Microbiol 2009; 75:7560–7564 [View Article][PubMed]
    [Google Scholar]
  8. Chen J, Bowman KS, Rainey FA, Moe WM. Reassessment of PCR primers targeting 16S rRNA genes of the organohalide-respiring genus Dehalogenimonas. Biodegradation 2014; 25:747–756 [View Article][PubMed]
    [Google Scholar]
  9. Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 1996; 46:1088–1092 [View Article][PubMed]
    [Google Scholar]
  10. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  11. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007; 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  12. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro NH. (editor) Mammalian Protein Metabolism New York, NY: Academic Press; 1969 pp. 21–132 [CrossRef]
    [Google Scholar]
  13. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  14. Manchester MJ, Hug LA, Zarek M, Zila A, Edwards EA. Discovery of a trans-dichloroethene-respiring Dehalogenimonas species in the 1,1,2,2-tetrachloroethane-dechlorinating WBC-2 consortium. Appl Environ Microbiol 2012; 78:5280–5287 [View Article][PubMed]
    [Google Scholar]
  15. Molenda O, Quaile AT, Edwards EA. Dehalogenimonas sp. strain WBC-2 genome and identification of its trans-dichloroethene reductive dehalogenase, TdrA. Appl Environ Microbiol 2016; 82:40–50 [View Article]
    [Google Scholar]
  16. Maymó-Gatell X, Anguish T, Zinder SH. Reductive dechlorination of chlorinated ethenes and 1, 2-dichloroethane by "Dehalococcoides ethenogenes" 195. Appl Environ Microbiol 1999; 65:3108–3113[PubMed]
    [Google Scholar]
  17. Yan J, Rash BA, Rainey FA, Moe WM. Isolation of novel bacteria within the Chloroflexi capable of reductive dechlorination of 1,2,3-trichloropropane. Environ Microbiol 2009; 11:833–843 [View Article][PubMed]
    [Google Scholar]
  18. Moe WM, Stebbing RE, Rao JU, Bowman KS, Nobre MF et al. Pelosinus defluvii sp. nov., isolated from chlorinated solvent-contaminated groundwater, emended description of the genus Pelosinus and transfer of Sporotalea propionica to Pelosinus propionicus comb. nov. Int J Syst Evol Microbiol 2012; 62:1369–1376 [View Article][PubMed]
    [Google Scholar]
  19. Maness AD, Bowman KS, Yan J, Rainey FA, Moe WM. Dehalogenimonas spp. can reductively dehalogenate high concentrations of 1,2-dichloroethane, 1,2-dichloropropane and 1,1,2-trichloroethane. AMB Express 2012; 2:54 [View Article][PubMed]
    [Google Scholar]
  20. da Costa M, Albuquerque L, Nobre M, Wait R. The identification of fatty acids in bacteria. In Rainey FA, Oren A. (editors) Methods in Microbiology (Taxonomy of Prokaryotes) vol. 38 London: Elsevier Ltd; 2011 pp. 183–196
    [Google Scholar]
  21. Huntemann M, Ivanova NN, Mavromatis K, Tripp HJ, Paez-Espino D et al. The standard operating procedure of the DOE-JGI microbial genome annotation pipeline (MGAP v.4). Stand Genomic Sci 2015; 10:86 [View Article][PubMed]
    [Google Scholar]
  22. Auch AF, Klenk HP, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010; 2:142–148 [View Article][PubMed]
    [Google Scholar]
  23. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article][PubMed]
    [Google Scholar]
  24. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  25. Lee I, Kim YO, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  26. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  27. Morris RM, Sowell S, Barofsky D, Zinder S, Richardson R. Transcription and mass-spectroscopic proteomic studies of electron transport oxidoreductases in Dehalococcoides ethenogenes. Environ Microbiol 2006; 8:1499–1509 [View Article][PubMed]
    [Google Scholar]
  28. Morris RM, Fung JM, Rahm BG, Zhang S, Freedman DL et al. Comparative proteomics of Dehalococcoides spp. reveals strain-specific peptides associated with activity. Appl Environ Microbiol 2007; 73:320–326 [View Article][PubMed]
    [Google Scholar]
  29. Key TA, Richmond DP, Bowman KS, Cho YJ, Chun J et al. Genome sequence of the organohalide-respiring Dehalogenimonas alkenigignens type strain (IP3-3T). Stand Genomic Sci 2016; 11:44 [View Article][PubMed]
    [Google Scholar]
  30. Siddaramappa S, Challacombe JF, Delano SF, Green LD, Daligault H et al. Complete genome sequence of Dehalogenimonas lykanthroporepellens type strain (BL-DC-9T) and comparison to "Dehalococcoides" strains. Stand Genomic Sci 2012; 6:251–264 [View Article][PubMed]
    [Google Scholar]
  31. Padilla-Crespo E, Yan J, Swift C, Wagner DD, Chourey K et al. Identification and environmental distribution of dcpA, which encodes the reductive dehalogenase catalyzing the dichloroelimination of 1,2-dichloropropane to propene in organohalide-respiring Chloroflexi. Appl Environ Microbiol 2014; 80:808–818 [View Article][PubMed]
    [Google Scholar]
  32. Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA et al. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol 2013; 63:625–635 [View Article][PubMed]
    [Google Scholar]
  33. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  34. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  35. Seshadri R, Adrian L, Fouts DE, Eisen JA, Phillippy AM et al. Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science 2005; 307:105–108 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001819
Loading
/content/journal/ijsem/10.1099/ijsem.0.001819
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed